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Abstract

When using dyadic data (i.e., data indexed by pairs of units), researchers typically

assume a linear model, estimate it using Ordinary Least Squares and conduct infer-

ence using “dyadic-robust” variance estimators. The latter assumes that dyads are

uncorrelated if they do not share a common unit (e.g., if the same individual is not

present in both pairs of data). We show that this assumption does not hold in many

empirical applications because indirect links may exist due to network connections,

generating correlated outcomes. Hence, “dyadic-robust” estimators can be biased in

such situations. We develop a consistent variance estimator for such contexts by lever-

aging results in network statistics. Our estimator has good finite sample properties

in simulations, while allowing for decay in spillover effects. We illustrate our message

with an application to politicians’ voting behavior when they are seating neighbors in

the European Parliament.
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1 Introduction

Dyadic data is categorized by the dependence between two sets of sampled units (dyads). For

example, exports between the U.S. and Canada depend on both countries (and, plausibly,

their characteristics). This contrasts to classical data in the social sciences that only depends

on a single unit of observation (e.g., the GDP of the U.S., or a politician’s vote in a roll-call).

The empirical relevance of dyadic data is showcased by its widespread use, which has

increased over the past two decades (Graham (2020a) provides an extensive review). For

example, applications are found in political economy (correlation in voting behavior in Par-

liament across seating neighbors, Harmon et al. (2019)), international political economy and

trade (export-import outcomes across countries, Anderson and van Wincoop (2003)), inter-

national relations (Hoff and Ward (2004), for a salient example), among many others. In

fact, dyadic data is considered to be dominant in quantitative international relations (Poast,

2016). In these examples, applied researchers typically model the dependence between dyadic

outcomes and observable characteristics using a linear model, which they then estimate us-

ing Ordinary Least Squares (OLS). However, inference on such estimators for the linear

parameters is more complex.

The main approach in recent applied work has been the use of the so-called “dyadic-

robust” estimators (e.g., Cameron et al. (2011), Aronow et al. (2015), and Tabord-Meehan

(2019), among others). Such estimators build on the widely-used assumption in dyadic data

that the error terms for dyad (i, j) and for dyad (k, l) can only be correlated if they share

a unit (see Aronow et al. (2015) and Tabord-Meehan (2019) for a discussion; Cameron and

Miller (2014) for a review).

In this paper, we first argue that such an assumption does not hold in many applications

using dyadic data where dyads may be indirectly connected along a network.1 Figure 1

presents a simple example in the context of politicians in Congress, whose votes or decisions

depend on their seating neighbors. It is completely possible that behavior across dyads

(A,B) and (C,D) might be correlated along unobservables because they have many indirect

connections (in the figure, through A sitting next to B, who sits next to C).2 We show

that such spillovers invalidate the assumptions for consistency of existing “dyadic-robust”

variance estimators through generating interdependence, implying that they are biased for

the true asymptotic variance when dyads may be correlated even when they do not share a

1This is a concrete class of applied examples where the assumption fails. The possibility that cross-
sectional dependence in dyadic data might be more extensive than assumed has been pointed out by Cameron
and Miller (2014) and Cranmer and Desmarais (2016).

2We expand on these examples in the next section and in Appendix. Such spillovers could be further
rationalized as individual-level unobserved heterogeneity: e.g., an unmeasured preference for voting Yes, or
a preference for trading with a certain country (see Graham (2020b) and references therein for details).
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common unit.

Figure 1: Hypothetical Example of a Network in Parliament

Notes: The left figure shows a hypothetical example of politician networks based on seating arrangements:

A sits beside B, who sits beside C, who sits beside D. The right-hand figure illustrates the resulting net-

work among active dyads. As dyads (A,B) and (B,C) share a unit, they are indirectly linked in the dyadic

network. However, though dyads (A,B) and (C,D) do not have a politician in common, they might still be

correlated through two indirect links: namely, B sits beside C, who sits beside D. Hence, D’s actions can

affect politician A.

To deal with these issues, we develop a consistent variance estimator that explicitly

accounts for such network spillovers even with dyadic data, thereby complementing existing

approaches (e.g., Aronow et al. (2015)).3 We prove that our proposed variance estimator is

consistent for the true variance of the OLS estimator in linear models with dyadic data when

the cross-sectional dependence follows an observed (exogenous) network. Our main insight

is that the dependence across all dyads, including indirect spillovers, can be rewritten as

correlations across a specific network over dyads. This allows us to apply the framework of

Kojevnikov et al. (2021) to such network random variables, although here it is a network over

dyads, rather than individuals. Monte Carlo simulations show that our proposed estimator

has good finite sample properties and outperforms other estimators for the relevant contexts.

To help practitioners, we then provide a step-by-step guideline on whether our estimator

may be appropriate to their context. As we describe, this choice depends on: (i) whether

spillovers from indirectly connected dyads are likely to be present, (ii) whether the researcher

observes/constructs the network among dyads through which spillovers propagate, and (iii)

whether those spillovers are likely to be persistent. Our variance estimator is consistent for

the asymptotic variance of the OLS estimator even under (i)-(iii). And our estimator can

3We provide an extensive comparison of the relative benefits of each approach in the next section. We
note here, though, that neither approach subsumes the other, as they depend on different assumptions and
may be more appropriate for different applications.
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account for decay in propagation, as Corollary 3.1 and Example 3.1 illustrate.

Finally, we illustrate the extent to which neglecting network spillovers with dyadic data

may bias inference results. Beyond Monte Carlo simulations, we revisit the application in

Harmon et al. (2019) of voting in the European Parliament.4 The authors study whether

random seating arrangements (based on naming conventions) induce neighboring politicians

to agree with one another in policy votes. The outcome, whether politicians i and j vote

the same way on a policy, is dyadic in nature. However, i and j’s votes may be positively

correlated even if they are not neighbors: for instance, i and j may sit on either side of com-

mon neighbors k and l, who influence them both, and this seating arrangement is observed.

This chain of influences is sufficient to induce strong positive correlation across non-dyads.

We show that neglecting such higher order spillovers has significant empirical consequences:

their estimated variance using the estimator in Aronow et al. (2015) is roughly 22% smaller

than using our consistent estimator accounting for such spillovers; while the estimate based

on the Eicker-Huber-White estimator ignoring spillovers is approximately 73% smaller than

our proposal, consistent with the arguments of Erikson et al. (2014).

1.1 Related Literature

The use of dyadic data in Political Science has a rich history, particularly in International

Relations. However, empirical challenges with such models are well known – see Poast (2016)

for a historical overview. Early on, the concerns were mostly about model specification,

including the error term. This includes the 2001 special issue of International Organization,

mostly focusing on the use of fixed effects. More recently, Erikson et al. (2014) pointed out

that ignoring dependence across dyads can lead to erroneous hypothesis testing, as computed

standard errors would be too small. Hoff and Ward (2004) and Minhas et al. (2019, 2022)

suggest including random coefficients and latent variables to account for dependencies across

dyads. Our approach explicitly accounts for the whole network of interdependencies across

dyads, which can go beyond third-order dependences (assumed in Minhas et al. (2019, 2022)).

It does so by using asymptotic inference, rather than Bayesian (Minhas et al., 2019, 2022)

or randomized inference (Erikson et al., 2014).

As a result, our paper is directly related to the literature on (asymptotic) inference

in regression analysis with dyadic random variables. Aronow et al. (2015) and Tabord-

Meehan (2019) consider OLS estimation and inference in a linear dyadic regression model.

Meanwhile, Graham (2020a) and Graham (2020b) explore a likelihood-based approach to

dyadic regression models, while Graham et al. (2022) and Chiang and Tan (2022) provide

4Replication materials for all results are available online in Canen and Sugiura (2023).
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results for kernel density estimation in dyadic regression models. It is also related to other

developments in multiway clustering, as we detail in Appendix A.2. While useful to allow for

correlations along time and within such groups, this separable structure may be inappropriate

for environments where spillovers follow a complex form of dependence along a network.

However, we emphasize that neither approach subsumes the other. The papers cited

above leave the dependence within “clusters” (groups of dyads that share units) unrestricted,

but assume independence across such clusters. This is akin to the literature with one-

way clustering (e.g., Hansen and Lee (2019)). By comparison, our approach restricts such

dependence among groups of dyads that share units (i.e., dependence is assumed to follow

the observed network), but allows for dependence across such “clusters” of dyads along the

dyadic network.

2 Set-up

Assume that we observe a cross section of N ∈ N individuals located along a network – the

latter interpretable as politicians, countries, firms, or other observation units depending on

the context. The dyads present in the N -individual network (i.e., among the
(
N
N−1

)
possible

dyads), are called active dyads, so that the dyad for two units i and j (e.g., politicians,

countries) is denoted as some m. The set of active dyads is denotedMN and M denotes the

cardinality of that set.

We assume that each dyad m is endowed with a triplet of dyad-specific variables, forming

a triangular array {(yM,m, xM,m, εM,m)}m∈MN
with respect to M , where yM,m ∈ R is a

one-dimensional observable outcome, xM,m ∈ RK is a K-dimensional vector of observable

characteristics with K ∈ N, and εM,m ∈ R is a one-dimensional random error term that is

not observable to the researcher. We only consider exogenous network formation and the

network is assumed to be observable. These conditions are summarized in the following

assumption:

Assumption 2.1 (Exogenous and Observable Dyadic Networks). The network among dyads

is assumed to be conditionally independent of {εM,m}m∈MN
. Furthermore, this network

among the N individuals is assumed to be observable.

While such assumptions are standard in models of dyadic networks, they seem particularly

appropriate when units or dyad pairs are linked across geographical, physical, or ex-ante

social relations (e.g., family ties). This includes capturing neighboring and regional spillovers

across countries, as often done in international relations, or exogenous seating arrangements

in Parliament, as illustrated in the examples in the next section.

4



The subsequent arguments require us to distinguish between a pair of dyads who share

a member (i.e., who are directly linked – which we call, adjacent) and a pair of dyads who

are directly or indirectly linked (which we call, simply, connected).

Definition 1 (Adjacent & Connected Dyads). Two active dyads m and m′ are said to be

adjacent if they have an individual in common; and they are called connected if they are

linked through pairs of adjacent dyads.

In Figure 1, dyad (A,B) is adjacent to (B,C), and connected with, though not adjacent

to, (C,D). Hence, the adjacency relationship constitutes a network structure among active

dyads, and thus, a network over individuals can be transformed to one over active dyads.

For example, the right-hand side panel of Figure 1 provides a network over pairs of voting

politicians (i.e., active dyads).5 We define the geodesic distance between two connected dyads

m and m′ to be the smallest number of adjacent dyads between them. Note that adjacent

dyads are a special case of connected dyads with geodesic distance equal to one.

2.1 The Linear Model

2.1.1 Set-up & Identification

The cross-sectional model of interest takes the form of the linear network-regression model:

for any N ∈ N,

yM,m = x′M,mβ + εM,m ∀m ∈MN , (1)

where

Cov(εM,m, εM,m′ | XM) = 0 unless m and m′ are connected, (2)

and β is a K × 1 vector of the regression coefficients and XM denotes the M × K matrix

that records the observed dyad-specific characteristics, i.e., XM := [xM,1, . . . , xM,M ]′.

In this paper, we assume that β is identified, which follows from standard assumptions

on strict exogeneity, lack of multicollinearity and the existence of finite second moments of

yM,m and xM,m. (For completeness, see Assumption B.1 and Proposition B.1 in Appendix).

We note that equation (2) allows for there to be spillovers across the error terms even

when dyads m and m′ are not adjacent, as long as they are connected through indirect links.

By comparison, applied researchers such as Harmon et al. (2019) and Lustig and Richmond

5This corresponds to thinking about the line graph of the original graph over individuals.
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(2020) (and the estimators of Aronow et al. (2015) and Tabord-Meehan (2019)) consider a

variant of the linear regression (1) under the assumption

Cov(εM,d(i,j), εM,d(k,l) | xM,d(i,j), xM,d(k,l)) = 0 unless {i, j} ∩ {k, l} 6= ∅, (3)

with m = d(i, j) representing the dyad between i and j. This specific assumption would be

equivalent to setting:

Cov(εM,m, εM,m′ | XM) = 0 unless m and m′ are adjacent. (4)

2.1.2 Examples

Whether to allow indirect spillovers (as in (2)) or not (as in (4)) depends on the researchers’

applications. We now present examples where our approach may be preferable.

Example 2.1 (Gravity Model of Bilateral Trade Flow). A researcher is studying the trade

flow from country i to j, with (log) exports from i to j denoted yij. Following the literature,

(s)he assumes yij follows the structural gravity equation (e.g., Eaton and Kortum (2002);

Anderson and van Wincoop (2003); Melitz (2003); Helpman et al. (2008)):

yij = α + βzij + γ
∑
k 6=i

gkiyki + ηij, (5)

where zij represents a dyadic characteristic of i and j, such as the shipping cost, whether

both countries are democratic (e.g., Mansfield et al., 2000), or whether both participate in

WTO/GATT (e.g., Gowa and Kim, 2005);
∑

k gkiyki is the amount i spends on imports (gki

equals one if country i purchases goods from country k and zero otherwise), and ηij captures

unobserved heterogeneity pertaining to the trade flow between countries i and j.

To see our main point, suppose there are only four countries (1, 2, 3 and 4) which trade,

where country 1 exports to country 2, which in turn exports to country 3, and country 3

exports to country 4. Equation (5) then simplifies to: y12 = α + βz12 + η12,

y23 = α + βz23 + γy12 + η23, and henceforth.

Rearranging these equations implies that the trade flow from country 3 to 4 can be written

as:

y34 = α + αγ + αγ2 + γ2βz12 + γβz23 + βz34 + γ2η12 + γη23 + η34.

Therefore, Cov(y12, y34 | z) = γ2V ar(η12 | z) 6= 0, where z ≡ {z12, z23, z34}. Hence, there can

be non-zero correlation between trade flows y12 and y34 even if they do not have a country
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in common. This is because an idiosyncratic shock to an upstream country can propagate

through the trade network.

Example 2.2 (Legislative Voting). A researcher is interested in whether seating arrange-

ments in legislatures can affect a politician’s behavior, yi (e.g., propensity to vote “Yes” on

a roll-call, as Harmon et al. (2019), or the amount of co-sponsoring, as Saia (2018); Lowe

and Jo (2021), among others). For concreteness, suppose there are four politicians with the

seating arrangements given by Figure 1.

The researchers posit that i’s behavior can be influenced by the (average) of its seating

neighbors’ own voting behavior through a parameter γ as follows:

yA = α + γyB + ηA, yB = α + γ
yA + yC

2
+ ηB (6)

yC = α + γ yB+yD
2

+ ηC , yD = α + γyC + ηD (7)

If γ 6= 0, A is affected by their neighbor B, while B is affected by both of its neighbors (A

and C) and so forth. The researcher is interested in whether neighbors’ decisions are more

highly correlated than the decisions among non-neighbors.

Denote yij as the dyadic outcome of interest (e.g., a measure of correlation between i and

j’s decisions). Both yAB and yCD involve yB and yC, which are themselves a function of

ηB and ηC. Hence, Cov(yAB, yCD) 6= 0, even if the two pairs of legislators do not share a

common member.

2.1.3 Estimation

Throughout this paper, we focus on the Ordinary Least Squares (OLS) estimator of β,

denoted by β̂. Under the assumptions above, we can write

β̂ − β =

( ∑
j∈MN

xM,jx
′
M,j

)−1 ∑
m∈MN

xM,mεM,m. (8)

It is straightforward to verify that β̂ is unbiased for β under our identification conditions

(Assumption B.1). However, a consistency result is by no means trivial due to the dependence

along the network which induces a complex form of cross-sectional dependence, hindering a

näıve application of the standard theory for independently and identically distributed (i.i.d.)

random vectors.
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2.2 Outline of Our Procedure

2.2.1 Inference

Inference about β is based on a normal approximation of the distribution of β̂ around β. We

focus on hypothesis testing conducted using the expression:

(
V̂ ar(β̂)

)− 1
2 (β̂ − β), (9)

where V̂ ar(β̂) is a consistent estimator of the asymptotic variance of β̂. Our main result in
Section 3.4 is providing such an appropriate estimator, which takes the form:

V̂ ar(β̂) :=

( ∑
k∈MN

xkx
′
k

)−1( ∑
m∈MN

∑
m′∈MN

κm,m′hm,m′ ε̂mε̂m′xmx
′
m′

)( ∑
k∈MN

xkx
′
k

)−1
, (10)

where κm,m′ is an appropriate kernel function that will formally be defined in Section 3.4;

hm,m′ represents an indicator function that takes one if dyads m and m′ are connected and

zero otherwise; and ε̂m := ym − x′mβ̂.

This paper derives conditions under which V̂ ar(β̂) is consistent for the asymptotic vari-

ance of β̂. Before doing so, let us compare the variance estimator (10) with an often used

estimator based on one-way clustering of dyad groupings.

Remark 2.1 (Dyadic-Robust Variance Estimator). An increasing number of applied re-

searchers, such as Harmon et al. (2019) and Lustig and Richmond (2020), estimate model

(1) and conduct inference, using the following dyadic-robust variance estimators proposed by

Aronow et al. (2015) and Tabord-Meehan (2019):

V̂ ar(β̂) :=

( ∑
k∈MN

xkx
′
k

)−1( ∑
m∈MN

∑
m′∈MN

1m,m′ ε̂mε̂m′xmx
′
m′

)( ∑
k∈MN

xkx
′
k

)−1

, (11)

where 1m,m′ equals one if dyads m and m′ are adjacent and zero otherwise.

Note that the use of the dyadic-robust variance estimator sets cases in which two dyads

are not adjacent, but connected, to zero. Meanwhile, our estimator (10) accounts for network

spillovers by accommodating the correlation across both adjacent and connected dyads.6 As

our examples above suggest, the structure of the variance estimator (11) may not be com-

patible with indirect spillovers in some settings, which should assume the specification (2)

instead. This suggests that the dyadic-robust variance estimator may be inconsistent when

non-adjacent dyads can still affect the correlation structure and outcomes of dyad m.7 This

6See Definition 1 and the subsequent discussion. The choice of kernel and lag-truncation is discussed in
Section 3.4.

7Clustering estimators may be inappropriate when the correlation structure has network spillovers as
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conjecture is formally proven in Corollary 3.1 and illustrated in Monte Carlo simulations in

Section 4. We note that this is a feature of applying such dyadic-robust variance estimators

to network spillovers, and not a feature of those estimators per se.

2.2.2 Guidelines on Whether and How to Use the Proposed Estimator

1. When deciding whether to use our proposed estimator (10), the researcher should first

ask whether spillovers from indirectly connected dyads are likely to be present (and not

decay immediately) in their set-up: i.e., is equation (2) a more appropriate assumption

than equation (4)?

While this depends on the specific application, Examples 2.1-2.2 illustrate models where

that is likely to be the case. And condition (17) provides a notion of how much

persistence is needed for a bias to appear. As we show below, these insights are

robust to decaying spillover effects (see Corollary 3.1, Example 3.1, and the associated

simulation results).

2. If such spillovers of unobservables are likely to exist, are they governed by an exogenous

and observable network (Assumption 2.1), such as physical, geographical or social (e.g.,

family ties)?If so, the proposed estimator is appropriate under regularity conditions.

3. One can implement our estimator by: (i) choosing a kernel (e.g., rectangular, see

Section 3.4), (ii) setting the lag-truncation, bM (either by a known value, or adaptively

by bM = 2 log(M)/ log(max(average degree, 1.05)), where M is the number of dyads

and we use the average degree of the dyadic network, (iii) plugging-in those choices

into equation (10).

The estimator is consistent under regularity conditions, even when spillovers decay,

and shows good finite-sample properties in the simulations below.

3 Theoretical Results

in (2), because each agent has a complex (i.e., non-separable) structure of connections, reflected in a non-
separable network across dyads. If the network model features positive spillovers, then the dyadic-robust
variance estimator will likely underestimate the true variance, leading to conservative hypothesis testing.
Meanwhile, it is likely to overstate the true variance when there are negative spillovers. We expand on this
point in our numerical simulations.
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3.1 Network Dependent Processes

Let YM,m be a random vector defined as

YM,m := xM,mεM,m,
8 (12)

and denote CM := {xM,m}m∈MN
.9 From equations (8) and (12) we can write

β̂ − β =

(
1

M

∑
j∈MN

xM,jx
′
M,j

)−1
1

M

∑
m∈MN

YM,m. (13)

Our interest lies in proving the asymptotic properties of β̂ taking advantage of the ex-

pression (13). However, the presence of εM,m in YM,m, which is allowed to be correlated

along the network over active dyads, renders our approach nonstandard and unsuitable for

applications of canonical results, such as those for independently and identically distributed

(i.i.d.) random variables or even other variants, including spatially correlated and time-series

data.

The main insight of this paper is that the spillovers across connected – even if not ad-

jacent – dyads, can be rewritten as the dependence of YM,m’s along the network of active

dyads (hereby, referred to as the “network”). This allows us to embrace such complex cross-

sectional dependence and appropriately rewrite the problem so that recent results on network

dependent random variables (Kojevnikov et al., 2021) can be applied. To do so, the depen-

dence between random variables for any two sets of dyads A and B, YM,A and YM,B, which

are at a distance s from one another, is assumed to be controlled by a sequence of bounded

(random) coefficients θM,s. As the minimum distance, s, between A and B grows, the de-

pendence {θM,s} between YM,A and YM,B, is assumed to go to zero. A formal description is

provided in Appendix A.

3.2 Definitions

As will become transparent shortly, asymptotic theories for β̂ rest on tradeoffs between the

correlation of the network-dependent random vectors (i.e., the dependence coefficients) and

the denseness of the underlying network. To measure the denseness, we first define two

8By construction, the collection of YM,m’s constitutes a triangular array of random vectors.
9For the case of stochastic networks, it is defined to include information about the network topology as

well as the collection of the dyad-specific attributes {xM,m}m∈MN
. See Kojevnikov et al. (2021).
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concepts of neighborhoods: for each m ∈MN and s ∈ N ∪ {0},

MN(m; s) := {m′ ∈MN : ρM(m,m′) ≤ s},

M∂
N(m; s) := {m′ ∈MN : ρM(m,m′) = s},

where ρM(m,m′) denotes the geodesic distance between dyads m and m′.10 The former set

collects all the m’s neighbors whose distance from m is no more than s (which we call a

neighborhood), whilst the latter registers all the m’s neighbors whose distance from m is

exactly s (which we call a neighborhood shell).

Next, we define two types of density measures of a network: for k, r > 0,

∆M(s, r; k) :=
1

M

∑
m∈MN

max
m′∈M∂

N (m;s)
|MN(m; r)\MN(m′; s− 1)|k,

δ∂M(s; k) :=
1

M

∑
m∈MN

|M∂
N(m; s)|k,

(14)

where it is assumed that MN(m′;−1) = ∅. The former measure gauges the denseness of

a network in terms of the average size of a version of the neighborhood. Kojevnikov et al.

(2021) show that controlling the asymptotic behavior of an appropriate composite of these

two measures (denoted by cM and defined in Assumption 3.6) is sufficient for the Law of

Large Numbers (LLN) and Central Limit Theorem (CLT) of the network dependent random

variables (Condition ND).

Note that there are two different units at play here: the number of sampling units (i.e.,

individuals), N , and the number of dyads, M . We now assume that M → ∞ as N → ∞,

eliminating the possibility of extremely sparse networks among individuals. This is empir-

ically relevant and consistent with both applied and theoretical literatures – see Appendix

A.1 for a discussion.

Assumption 3.1. M →∞ as N →∞.

3.3 Asymptotic Properties of β̂

We make use of the following two regularity assumptions for the proof of consistency of β̂

for β (Theorem 3.1) and to derive its asymptotic distribution (Theorem 3.2).11 All proofs

10Recall that we define the geodesic distance between two connected dyads m and m′ to be the smallest
number of adjacent dyads between them.

11These assumptions are required for Theorem 3.2, but as usual, the proof of consistency (Theorem 3.1)
can be derived under weaker conditions. (See Assumptions B.2 and B.3 and their associated discussion, in
Appendix).
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can be found in Appendix B.

Assumption 3.2 (Conditional Finite Moment of εm). There exists p > 4 such that

supN≥1 maxm∈MN
E
[
|εm|p | CM

]
<∞ a.s.

Assumption 3.3 (Kojevnikov et al. (2021), Assumption 3.4). There exists a positive se-

quence rM →∞ such that for k = 1, 2,

M2θ
1−1/p
M,rM

σM

a.s.→ 0, and
M

σ2+k
M

∑
s≥0

cn(s, rM ; k)θ
1− 2+k

p

M,s

a.s.→ 0,

as M →∞, where p > 4 is the same as the in Assumption 3.2.

Assumption 3.2 requires that the errors are not too large once conditioned on common

shocks. Together with the standard full rank assumption for identification of β, this implies

Assumption 3.1 of Kojevnikov et al. (2021) for each u-th element of YM,m, denoted by Y u
M,m

with u ∈ {1, . . . , K}.
Assumption 3.3 is a condition that controls the tradeoff between the denseness of the

underlying network and the covariability of the random vectors. If the network becomes

dense, then the dependence of the associated random variables has to decay much faster.

This embodies the idea that spillovers decay as they propagate farther (see, e.g., Kelejian

and Prucha (2010)), which is consistent with the applications described above. For instance,

Acemoglu et al. (2015) assume that network spillovers are zero if agents are sufficiently

distantly connected on a geographical network. This assumption may be violated for very

dense networks with low decay of spillovers.

3.3.1 Consistency

Theorem 3.1 (Consistency of β̂). Under Assumptions 3.1-3.3, ‖β̂ − β‖2
p→ 0 as N →∞.

When Assumption 3.1 is dropped, Theorem 3.1 continues to hold in terms of the number

of active dyads M .

3.3.2 Asymptotic Normality

Let SM :=
∑

m∈MN
YM,m, which is present in β̂ in equation (13). Let SuM be the u-th entry

of SM for u ∈ {1, . . . , K} and denote the unconditional variance of SuM by τ 2
M := V ar(SuM).

Since SuM is not a sum of independent variables, its variance cannot be simply expressed as

a sum of the variances of YM,m. We thus need to explicitly take into account covariance

12



between the random variables {Y u
M,m}m∈MN

. We study the CLT for the normalized sum of

Y u
M,m, which is given by

SuM
τM

.

Assumption 3.4 below bridges the conditional variance (assumed in Assumptions 3.2 and

3.3)) and the unconditional variance of SM
τM

, which we are interested in. The final assumption

for the asymptotic normality result is a standard regularity condition guaranteeing that the

asymptotic variance is well-defined12, which follows from both matrices in the expression

being well-defined.

Assumption 3.4 (Growth Rates of Variances).
σ2
M

τ2M

a.s.→ 1 as N →∞.

Assumption 3.5. (a) For all N ≥ 1, {xM,m}m∈MN
have uniformly bounded support.

(b) limN→∞

(
1
M

∑
k∈ME

[
xM,kx

′
M,k

])
is positive definite.

(c) limN→∞
N
M2

∑
m∈MN

∑
m′∈MN

E
[
εM,mεM,m′xM,mx

′
M,m′

]
exists with finite elements.

Under these assumptions, the asymptotic distribution of β̂ is given by:

Theorem 3.2 (Asymptotic Normality of β̂). Under Assumptions 3.1-3.5,√
N
(
β̂ − β

) d→ N (0, AV ar(β̂)) as N →∞, where

AV ar(β̂) = lim
N→∞

N
( ∑

k∈MN

E
[
xM,kx

′
M,k

])−1( ∑
m∈MN

∑
m′∈MN

E
[
εM,mεM,m′xM,mx

′
M,m′

])( ∑
k∈MN

E
[
xM,kx

′
M,k

])−1
,

(15)

which is positive semidefinite with finite elements.

3.4 Consistent Estimation of the Asymptotic Variance of β̂ under

Network Spillovers

Our objective is to consistently estimate AV ar(β̂) defined in Theorem 3.2. As errors are

mean zero, YM,m is centered, i.e., E
[
YM,m

]
= 0 for each m ∈MN .

3.4.1 The Estimator

The proposed estimator is a type of kernel estimator. Let bM denote the bandwidth, or the

lag truncation (its choice is described in Section 3.4.2 below) and ω : R → [−1, 1] a kernel

function such that ω(0) = 1, ω(z) = 0 whenever |z| > 1, and ω(z) = ω(−z) for all z ∈ R.

The feasible variance estimator of interest is

V̂ ar(β̂) =
( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1( 1

M2

∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s)

ωM (s)ŶM,mŶ
′
M,m′

)( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1
,

(16)

12Further note that Theorem 3.2 is proved under a weaker condition than Assumption 3.4.
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with ωM(s) := ω
(
s
bM

)
for all s ≥ 0 and ŶM,m := xM,mε̂M,m, where ε̂M,m := yM,m − x′M,mβ̂.

3.4.2 Choice of Lag Truncation, bM :

There are two approaches for the choice of the associated lag truncation parameter. First,

the researcher may already know (or is willing to impose) the truncation, perhaps due to

a theoretical/institutional motivation. For instance, Acemoglu et al. (2015) set the lag to

two in a related problem. Then, the thought exercise is that this choice will adapt as

M → ∞ according to the assumptions below. Alternatively, the researcher could use a

data-driven choice. Assumption 3.6 (c) below suggests it should depend on both the sample

size and the network topology, including the average degree of the dyadic network. One

such selection rule is suggested in Kojevnikov et al. (2021) based on their proofs: bM =

2 log(M)/ log(max(average degree, 1.05)).

3.5 Consistency of the Proposed Estimator

The consistency of the variance estimator requires two sets of additional assumptions. The

first set is Assumption 4.1 of Kojevnikov et al. (2021), but stated here in terms of the network

over dyads.

Assumption 3.6 (Kojevnikov et al. (2021), Assumption 4.1). There exists p > 4 such that

(a) supN≥1 maxm∈MN
E
[
|εm|p | CM

]
<∞ a.s.;

(b) limM→∞
∑

s≥1 |ωM(s)− 1|δ∂M(s)θ
1− 2

p

M,s = 0 a.s.;

(c) limM→∞
1
M

∑
s≥0 cM(s, bM ; 2)θ

1− 4
p

M,s = 0 a.s., where

cM(s, r; k) := inf
α>1

(
∆M(s, r; kα)

) 1
α

(
δ∂M
(
s;

α

α− 1

))α−1
α
.

Assumption 3.6 (a) is a stronger counterpart to Assumption 3.2, as it requires that a

higher-order (i.e., higher than fourth order) conditional moment be well-defined. Assump-

tion (b) posits a tradeoff between the kernel function, the denseness of a network and the

dependence coefficients. Specifically, the kernel function ωM is required to converge to one

sufficiently fast. Kojevnikov et al. (2021) demonstrate primitive conditions under which this

requirement is fulfilled (Proposition 4.2). Assumption (c) requires that the correlation coef-

ficients decay much faster relative to the denseness of the network. This is satisfied in the

suggested choice for bM above.

Another set of conditions restricts the denseness of the network, ruling out the situation

where the network becomes progressively dense: most notably, the case where every single

individual unit is directly linked to every other individual.
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Assumption 3.7. (a) supN≥1

∑
s≥0 δ

∂
M(s; 1) <∞; (b) limM→∞

1
M

∑
s≥0 cM(s, bM ; 2) = 0.

The following theorem is the main theoretical contribution of this paper.

Theorem 3.3 (Consistency of the Network-Robust Variance Estimator). Under the con-

ditions for Theorem 3.2, and Assumptions 3.6 and 3.7,
∥∥NV̂ ar(β̂) − V ar(β̂)

∥∥
F

p→ 0 as

N →∞, where ‖ · ‖F indicates the Frobenius norm.

Theorem 3.3 establishes the consistency of our proposed variance estimator accounting

for network spillovers across dyads in the sense of the Frobenius norm.

3.6 When to Use the Proposed Estimator and the Role of Decay-

ing Spillover Effects

It follows from Theorem 3.3 that the dyadic-robust variance estimator (11) is inconsistent

for the true variance when the underlying network involves a non-negligible degree of far-

away correlations, as suggested in the examples of the previous section.13 Specifically, the

following corollary states that the dyadic-robust variance estimator of Aronow et al. (2015)

may not necessarily be consistent when it is näıvely applied to the network-regression model

with non-zero correlations beyond direct neighbors.

Corollary 3.1 (Inconsistency of Dyadic-Robust Estimators with Network Spillovers). Sup-

pose that the assumptions required in Theorem 3.3 hold. Assume, in addition, that

inf
N≥1

1

M

∥∥∥∥∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

E
[
εM,mεM,m′xM,mx

′
M,m′

]∥∥∥∥
F

> 0. (17)

Then, the dyadic-robust estimator (11) applied to the network-regression model (1) and (2)

is inconsistent.

The added condition (17) in Corollary 3.1 pertains to both the network configuration

of active dyads and the regression variables. It represents a setting where the spillovers

from far-away neighbors are non-negligible even when N is large. For instance, (17) can

hold even if there are not many neighbors, as long as the covariances between the error

13If the network is such that there are only adjacent dyads (i.e., when equation (4) holds), then the result
above implies consistency of this estimator for dyadic dependence. By comparison, Lemma 1 of Aronow et al.
(2015) and Proposition 3.1 and 3.2 of Tabord-Meehan (2019) also provide consistent variance estimators for
the dyadic dependence case without higher-order network spillovers. However, these results and ours do
not subsume one another. Indeed, their estimators can accommodate flexible dependence within clusters of
dyads that share common units, while we assume that the network of spillovers is observed even if there are
only adjacent connections.
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terms are sufficiently large. This builds on Erikson et al. (2014) that inference with dyadic

data may be biased if one only partially accounts for such spillovers. On the other hand,

if far-away neighbors in the network have only a negligible effect on the cross-sectional

dependence, the dyadic-robust variance estimator remains a good approximation for the

asymptotic variance of linear dyadic data models with network spillovers across dyads. These

insights are investigated further in Section 4 using numerical simulations.

These observations extend to settings where the spillovers decay along the network (i.e.,

when the correlation along unobservables decreases with the geodesic distance among dyads).

Indeed, our estimator already accounts for such decay through the indirect covariances in its

expression (16). When such spillovers propagate and decay is not too high, then condition

(17) is satisfied, as such spillovers are non-neglible. On the other hand, if they decay at

a very high rate (in the limit, a 100% decay from adjacent to connected dyads), then our

estimator will become very similar to the dyadic-robust variance estimator.

However, some researchers may be willing to tolerate some asymptotic bias to still imple-

ment the dyadic-robust estimator. Then, when should they prefer our proposed estimator?

While a general answer is complex because the bias depends on both the strength of indirect

spillovers and on the network configuration, the example below, together with the subsequent

simulations, provide useful directions for salient settings.

Example 3.1 (Maximum Admissible Bias in the Dyadic-Robust Variance Estimator). Sup-

pose that spillovers decay exponentially with distance along the network: i.e.,

E
[
εM,mεM,m′xM,mxM,m′

]
= γs, where s is the geodesic distance between dyads m and m′,

γ ∈ (0, 1) and S the longest path in the network.

Let B > 0 denote the maximum tolerance for condition (17) that the researcher is willing

to allow when using the dyadic-robust variance estimator (11). Then, a sufficient condition

for the researcher to prefer the proposed estimator (16) over (11) is that the decay rate γ is

higher than a threshold γ̄, where

ln γ̄ =
2

S + 2

{
lnB − ln(S − 1)− 1

S − 1

∑
s≥2

ln δ∂M(s)

}
.

When the tolerated bias is small (B → 0), dependence is large enough and does not

decay too fast (large γ), or the network is more dense, our approach is preferable because

it provides a consistent estimator even with non-negligible spillovers. Since the network is

observed, S and the last term are estimable and can be used for such diagnostics. Appendix

C.5 provides further discussions, while the next section presents for our baseline results and

discusses simulation exercises.
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4 Monte Carlo Simulations

4.1 Simulation Design

We compare three types of variance estimators across different specifications and network

configurations. We use the Eicker-Huber-White estimator as a benchmark,14 the dyadic-

robust estimator of Tabord-Meehan (2019) as a comparison accounting for the dyadic nature

of the data (when inappropriately used in the presence of network spillovers), and our pro-

posed estimator which is robust to network spillovers across dyads.

We first generate networks on which random variables are assigned by following Canen

et al. (2020), among others, by employing two models of random graph formations. They

are referred to as Specifications 1 and 2. Specification 1 uses the Barabási and Albert’s

(1999) model of preferential attachment, with the fixed number of edges ν ∈ {1, 2, 3} being

established by each new node.15 Specification 2 is based on the Erdös-Renyi random graph

(Erdös and Rényi, 1959, 1960) with probability p = λ
N

for N denoting the number of nodes

and λ ∈ {1, 2, 3} being a parameter that governs the probability relative to the node size.

The summary statistics for the networks generated by Specification 1 and 2 are given in

Appendix C.1.

For each of the randomly generated networks, the simulation data is generated from the

following simple network-linear regression:

ym = xmβ + εm,
16

with m := d(i, j) representing the dyad between agent i and j. The dyad-specific regressor

xm is defined as xm := |zi− zj|, where both zi and zj are drawn independently from N (0, 1).

The regression coefficient is fixed to β = 1 across specifications.

The dyad-specific error term εm is constructed to exhibit non-zero correlation with εm′ as

long as dyads m and m′ are connected (i.e., in the network terminology, there exists a path

in the simulated network), while the strength of the correlation is assumed to decay as they

are more distant. This decay is parametrized by γ – see Appendix C for details. If γ = 1,

then spillover effects are the same no matter how far the agents are apart, i.e., the spillover

effects do not decay. If γ = 0, there are no spillover effects, so the dyadic-robust variance

estimator should be consistent. The case of S = 2 corresponds to a situation where up to

14It is used in Bliss and Russett (1998) and Mansfield et al. (2000), for instance.
15In generating the Barabási-Albert random graphs, we follow Canen et al. (2020) by choosing the seed

to be the Erdös-Renyi random graph with the number of nodes equal the smallest integer above 5
√
N , where

N denotes the number of nodes.
16To simplify notation, we drop the M subscript, making the triangular array structure implicit.
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friends of friends may matter for spillovers.

We consider three scenarios for each type of network. In the main text, we set S = 2

and γ = 0.8. The results for S = 2 with γ = 0.2 are given in Appendix C.5, and the ones

for S = 1 with γ = 0.8 are in Appendix C.6. For comparison purposes, we employ the

mean-shifted (by one) rectangular kernel with the lag truncation equal to two throughout

the experiments.

4.2 Results

In Table 1 we present the coverage probability for β and the average length of the confidence

interval across simulations. To do so, we compute the t-statistic using the OLS estimator

for β and different variance estimators under a Normal distribution approximation.17 The

finite-sample properties of the three variance estimators are further illustrated in Figure 2

in Appendix C.3.

The results for the empirical coverage probabilities depend on two dimensions: the sample

size (N) and the denseness of the underlying network (parametrized by ν and λ). The cover-

age probability for each estimator improves with the sample size. However, when spillovers

are high (γ = 0.8), only our proposed network-robust variance estimator has coverage close

to 95%, consistent with Theorem 3.3. Meanwhile, in this set-up, both the Eicker-Huber-

White and the dyadic-robust variance estimators perform poorly as the underlying network

becomes denser, no matter which specification of the network is involved. For example, in

Specification 1 with ν = 3 and the largest sample size (N = 5000), the confidence intervals

based on the Eicker-Huber-White and the dyadic-robust variance estimators do not cover the

true parameter 615 and 455 times out of 5000 simulations (12.3% and 9.1%), respectively.

On the other hand, the network-robust variance estimator is designed to capture higher-order

correlations and, thus, its coverage remains stable across network configurations.

A similar conclusion is drawn from the average length of the confidence intervals: the

confidence intervals for the Eicker-Huber-White and dyadic-robust variance estimators are

typically 10-20% shorter than those for our proposed estimator when γ is large and S =

2. This means the former undercovers the true parameter (in the presence of positive

spillovers).However, as the magnitude of spillovers decreases (i.e. γ tends to zero), higher-

order spillovers are less pronounced, so that the biases from using the Eicker-Huber-White

and dyadic-robust variance estimators disappear. This is shown in Table 7 of Appendix C.5

17It is well known that estimates of a variance-covariance matrix may be negative semidefinite when the
sample size is very small. This occurs in four out of 5000 simulations when N = 500. Rather than dropping
such observations, we follow Cameron et al. (2011) and augment the eigenvalues of the matrix by adding a
small constant, say 0.005, thereby obtaining a new variance estimate that is more conservative.
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Table 1: The empirical coverage probability and average length of confidence intervals for β
at 95% nominal level: S = 2, γ = 0.8.

Specification 1 Specification 2

N ν = 1 ν = 2 ν = 3 λ = 1 λ = 2 λ = 3

Coverage Probability
Eicker-Huber-White 500 0.877 0.868 0.871 0.891 0.870 0.875

1000 0.880 0.873 0.873 0.892 0.881 0.888
5000 0.879 0.871 0.877 0.890 0.882 0.880

Dyadic-robust 500 0.922 0.898 0.894 0.932 0.921 0.917
1000 0.929 0.913 0.901 0.937 0.927 0.924
5000 0.934 0.912 0.909 0.939 0.933 0.922

Network-robust 500 0.930 0.917 0.915 0.937 0.937 0.941
1000 0.939 0.934 0.933 0.946 0.945 0.948
5000 0.949 0.944 0.943 0.947 0.948 0.948

Average Length of the Confidence Intervals
Eicker-Huber-White 500 0.368 0.409 0.482 0.287 0.285 0.296

1000 0.266 0.302 0.331 0.205 0.201 0.207
5000 0.132 0.159 0.176 0.092 0.090 0.094

Dyadic-robust 500 0.426 0.454 0.520 0.328 0.329 0.337
1000 0.312 0.339 0.361 0.236 0.232 0.237
5000 0.158 0.178 0.192 0.106 0.104 0.108

Network-robust 500 0.441 0.493 0.568 0.337 0.349 0.366
1000 0.326 0.373 0.408 0.244 0.248 0.259
5000 0.167 0.199 0.222 0.110 0.112 0.118

Note: The upper-half of the table displays the empirical coverage probability of the asymptotic

confidence interval for β, and the lower-half showcases the average length of the estimated confi-

dence intervals. As the sample size (N) increases, the empirical coverage probability for our esti-

mator accounting for network spillovers approaches 0.95, the correct nominal level. However, that

is not the case for alternative estimators.

for the case of S = 2 and γ = 0.2. When S = 1, the dyadic-robust variance estimator

coincides with our proposed estimator (i.e., there are no spillovers from non-adjacent links,

or spillovers fully decay immediately). This is shown in Table 8 of Appendix C.6.

Finally, Appendix C.7 shows that the results are robust to spillovers that can reach the

most distantly connected neighbors (S =∞) and to choosing the lag-truncation adaptively,

following the rule bM = 2 log(M)/ log(max(average degree, 1.05)) suggested above.
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5 Empirical Illustration: Legislative Voting in the Eu-

ropean Parliament

We now turn to an empirical application, revisiting the work of Harmon et al. (2019) on

whether legislators who sit next to each other in Parliament tend to vote more alike on

policy proposals.

They focus on the European Parliament, whose Members (MEPs) are voted in through

elections in each European Union (EU) member country every five years. The Parliament

convenes once or twice a month, in either Brussels or Strasbourg, to debate and vote on a

series of proposals. Once elected to the European Parliament (EP), these MEPs are organized

into European Political Groups (EPGs), which aggregate similar ideological members/parties

across countries. As Harmon et al. (2019) describe, these EPGs function as parties for many

of the traditional party-functions in other legislatures, including coordination on policy and

policy votes. Most importantly, MEPs sit within their EPG groups in the chamber. However,

within each EPG group, non-party leaders traditionally sit in alphabetical order by last name.

See Figure 4 in Appendix D.1 for an example.

5.1 Data

We adopt the dataset used in Harmon et al. (2019), which collects the MEP-level data on

votes cast in the EP. The dataset records what each MEP voted for (Yes or No), where

she was seated, and a number of individual characteristics (e.g. country, age, education,

gender, tenure, etc). We restrict the sample to the policies voted in Strasbourg during the

seventh term and we focus on the seating pattern between July 14th – July 16th, 2009

(which involved 116 different proposals being voted on). The resulting sample has 2,431,261

observations, which are split into 422 politicians forming 26,099 pairs (i.e., dyads) of MEPs

over 116 proposals.18 Further information on the construction of our sample is detailed in

Appendix D.3.

5.2 Empirical Set-up

We follow Harmon et al. (2019) in assuming that two MEPs who are seated next to each

other within the same political group are treated as an active dyad and that such relations

18There are 334 pairs of adjacent dyads and 591 pairs of connected dyads.
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are exogenously determined. Their main specification is a linear model:

Agreed(i,j),t = β0 + β1SeatNeighborsd(i,j),t + εd(i,j),t, (18)

where Agreed(i,j),t is an indicator that takes one if MEP i and j cast the same vote on

proposal t, and zero otherwise, SeatNeighborsd(i,j),t is a binary variable that equals one if

MEP i and j are seated next to each other when the vote for proposal t is taken place, and

zero otherwise. The authors originally conducted inference using the estimator in Aronow

et al. (2015), assuming that dyads m = d(i, j) cannot be correlated with m′ = d(k, l) unless

they share a common member.

We compare this approach to using the variance estimator introduced in Section 3.4,

which allows the error terms to exhibit non-zero correlations as long as they are connected

on the network over dyads represented by the adjacency relation of seating arrangements in

Parliament. We use the mean-shifted rectangular kernel with the lag truncation equal the

longest path in the constructed network, which accommodates all the possible correlations

across connected dyads (i.e., pairs of MEPs), placing equal weight on each of them.19

Inspired by Harmon et al. (2019), we consider three specifications: (I) a simple linear

regression model as given in (18); (II) the model (18) augmented with a flexible set of

other demographic variables;20 and (III) the model (18) with both a flexible set of other

demographic variables and day-specific fixed effects. When fixed effects are present in their

original estimation, we estimate a within-difference model via OLS.

5.3 Results

The main results of our empirical analysis are summarized in Table 2. Panel A displays the

parameter estimates for the three different specifications. This panel shows that our point-

estimates are consistent with the original estimates of Harmon et al. (2019) (columns 6 and 7

of Table 4), as they are close to 0.006 (their original results) and stable across specifications.21

Hence, changes to point-estimates are not due to sample selection. The positive coefficient

for SeatNeighbors suggests that the MEPs sitting together tend to vote more similarly than

those sitting apart, providing evidence in favor of their original hypothesis. The coefficients

on the covariates (displayed in Panel C of Appendix Table 13) are also quantitatively and

19In Appendix D.4, we replicate this analysis with a different choice of kernel and setting the lag-truncation
parameter following the criterion suggested above/in Kojevnikov et al. (2021). The results are very similar.

20Following Harmon et al. (2019), we include indicators whether country of origins, quality of education,
freshman status and gender, respectively, are the same, as well as differences in ages and tenures.

21Note that our dependent variable is equal to one if two MEPs vote the same and zero otherwise, while
Harmon et al. (2019) code it as one if MEPs vote differently. Hence, to compare our estimates with theirs,
the signs on the estimates of SeatNeighbors must be flipped.
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qualitatively similar to those in their original paper.

Panel B shows the standard errors for the regression coefficient of SeatNeighbors using

different variance estimators. As foreshadowed in the Monte Carlo simulations, the Eicker-

Huber-White estimates are the smallest, followed by the dyadic-robust estimates, which,

in turn, are smaller than the network-robust estimates. In fact, for Specification (III), the

Eicker-Huber-White estimate is roughly 73% smaller than using the estimator accounting for

network spillovers across dyads, while the dyadic-robust one is 22% smaller. This fact entails

two implications. First, our finding provides empirical evidence in support of the existence

of indirect positive spillovers among the MEPs: even distant connections may indirectly

generate correlated behavior among politicians i and j. Second, the use of alternative esti-

mators not accounting for such spillovers undercovers the true parameter and may generate

biased hypothesis testing about the regression coefficient of SeatNeighbors. The difference

in estimates appears quantitatively meaningful in this empirical example.

Table 2: Spillovers in Legislative Voting – Main Analysis

Specification (I) Specification (II) Specification (III)

Panel A: Parameter Estimates
Seat neighbors 0.007 0.006 0.006

Panel B: Standard errors
Eicker-Huber-White 0.003 0.003 0.003
Dyadic-robust 0.008 0.008 0.009
Network-robust 0.010 0.010 0.011

Notes: Panel A displays the parameter estimates for the variable “Seat Neighbors” for the three different
specifications, and Panel B shows the standard errors for its regression coefficient using different variance
estimators. Adjacency of MEPs is defined at the level of a row-by-EP-by-EPG. (See the note below
Figure 4.) The independent variables are Seat neighbors, whether both MEPs are from the same
country; whether both MEPs have the same quality of education, whether both MEPs are freshman or
not; the difference in the MEPs’ ages; and the difference in the MEPs’ tenures. A full description of
the result is provided in Table 13.

6 Conclusion

To conclude, we clarify that our goal in this exercise is neither to criticize dyadic-robust vari-

ance estimators, which are a fundamental part of the empiricist’s toolkit, nor to suggest our

approach should always be used. Rather, we wish to draw attention that researchers should

fully specify the cross-sectional dependence in their model. If the conventional assumption of

dyadic dependence correctly specifies the environment in question, or when spillovers beyond

immediate neighbors might be negligible, then previous approaches suffice. However, as we

have discussed above, existing applications may apply the latter method even if it is seem-

ingly inappropriate to their setting. This includes situations where such network spillovers
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may be present or persistent (even with decay). In such scenarios, our estimator provides a

possible solution. Those choices, though, must be guided by the application that empiricists

face. Hence, building on Poast (2016), we recommend researchers to continue to fully specify

their model, including full specification of their covariance structure, thereby clarifying what

type of inference procedure is most appropriate for their environment.
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Supplementary Material (Online-Only Publication) for:

“Inference in Linear Dyadic Data Models

with Network Spillovers”

Nathan Canen and Ko Sugiura

A Mathematical Set-up

This section lays out the mathematical set-up of our model in more detail, heavily drawing

from Kojevnikov et al. (2021). We conclude with a discussion of the related statistical

literature.

We first define a collection of pairs of sets of dyads. For any positive integers a, b and s,

define

PM(a, b; s) := {(A,B) : A,B ⊂MN , |A| = a, |B| = b, ρM(A,B) ≥ s},

where

ρM(A,B) := min
m∈A

min
m′∈B

ρM(m,m′), (19)

with ρM(m,m′) denoting the geodesic distance between dyads m and m′, i.e., the smallest

number of adjacent dyads between dyads m and m′. In words, the set PM(a, b; s) collects all

two distinct sets of active dyads whose sizes are a and b and that have no dyads in common.

Next we consider a collection of bounded Lipschitz functions. Define

LK := {LK,c : c ∈ N},

where

LK,c := {f : RK×c → R : ‖f‖∞ <∞,Lip(f) <∞},

with ‖ · ‖∞ representing the supremum norm and Lip(f) being the Lipschitz constant.22 In

words, the set LK,c collects all the bounded Lipschitz functions on RK×c and the set LK
moreover gathers such sets with respect to c ∈ N.

22It is immediate to see that R is a normed space with respect to the Euclidean norm, while the RK×c

can be equipped with the norm ρc(x, y) :=
∑c

`=1 ‖x` − y`‖ where x, y ∈ RK×c and ‖z‖ := (z′z)
1
2 , thereby

the Lipschitz constant is defined as Lip(f) := min{w ∈ R : |f(x)− f(y)| ≤ wρc(x, y) ∀x, y ∈ RK×c}.
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Lastly, we write

YM,A := (YM,m)m∈A,

and YM,B is analogously defined. Let {CM}M≥1 denote a sequence of σ-algebras and be

suppressed as {CM}.
The network dependent random variables are characterized by the upper bound of their

covariances, first defined in Definition 2.2 of Kojevnikov et al. (2021).

Definition A.1 (Conditional ψ-Dependence given {CM}). A triangular array {YM,m ∈ RK :

M ≥ 1,m ∈ {1, . . . ,M}} is called conditionally ψ-dependent given {CM}, if for each M ∈ N,

there exist a CM -measurable sequence θM := {θM,s}s≥0 with θM,0 = 1, and a collection of

nonrandom function (ψa,b)a,b∈N where ψa,b : LK,a ×LK,b → [0.∞), such that for all (A,B) ∈
PM(a, b; s) with s > 0 and all f ∈ LK,a and g ∈ LK,b,∣∣Cov(f(YM,A), g(YM,B) | CM

)∣∣ ≤ ψa,b(f, g)θM,s a.s.

Intuitively, this definition states that the upper bound must be decomposed into two

components. The first part ψa,b(f, g) is deterministic and depends on nonlinear Lipschitz

functions f and g. The other component θM,s is stochastic and depends only on the distance

of the random variables on the underlying network. The former, nonrandom component

reflects the scaling of the random variables as well as that of the Lipschitz transformations,

while the latter random part stands for the covariability of the two random variables. We call

θM,s the dependence coefficient. We follow Kojevnikov et al. (2021) in assuming boundedness

for these two components.

Assumption A.1 (Kojevnikov et al. (2021), Assumption 2.1). The triangular array {YM,m ∈
R
K : M ≥ 1,m ∈ {1, . . . ,M}} is conditionally ψ-dependent given {C} with the dependence

coefficients {θM,s} satisfying the following conditions: (a) there exists a constant C > 0 such

that ψa,b(f, g) ≤ C × ab
(
‖f‖∞ + Lip(f)

)(
‖g‖∞ + Lip(g)

)
; (b) supM≥1 maxs≥1 θM,s <∞ a.s.

Assumption A.1 is maintained throughout the paper and employed to show asymptotic

properties of our estimators such as the consistency and asymptotic normality, and the

consistency of the network-robust variance estimator for dyadic data.

A.1 Additional Discussion of Assumption 3.1

Assumption 3.1 assumed thatM →∞ asN →∞. This is consistent with many applications.

For example, in international trade, the entry of a new country/firm to a market will most
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likely increase the number of trade flows in the economy; in political economy, the more

members of parliaments (MEPs) there are, the more pairs of the MEPs sitting next to each

other there will be (see Section 5).

This assumption is similar in spirit to Assumption 2.3 of Tabord-Meehan (2019) in which

the minimum degree is assumed to grow at some constant rate relative to the number of

individuals. It is milder than Assumption 2.3 of Tabord-Meehan (2019) since the latter does

not allow any individual to be isolated, while Assumption 3.1 merely constrains the average

degree. Similarly, this assumption is weaker than the assumption that the maximum degree

in a network is bounded even when N →∞ (e.g., Penrose and Yukich (2003) and de Paula

et al. (2018)).

A.2 Related Literature

As stated in the main text, our paper is related to the recent literature on inference for mul-

tiway clustering, whether OLS estimation with multiway clustering (Cameron et al. (2011));

a clustering method in high-dimensional set-ups (Chiang et al. (2021)); clustering within the

time dimension (Chiang et al. (2022)); clustered inference with empirical likelihood (Chiang

et al. (2022)); bootstrap methods in multiway clustering (Davezies et al., 2021; Menzel, 2021;

MacKinnon et al., 2022b); clustering in the context of average treatment effects (Abadie et al.

(2022)), to name but a few (see MacKinnon et al. (2022a) for review). Again, one of the

common assumptions in this literature is that individual observations are divided into dis-

joint groups – clusters – and observations in different clusters are not correlated. To that

end, MacKinnon et al. (2022c) propose measures of cluster-level influence that can be used to

assess whether the underlying assumption of cluster-robust variance estimation is satisfied.

Our approach complements the existing methods similar to how inference with spatial

data (e.g., Conley (1999) and Jenish and Prucha (2009)) complements one-way clustering

inference. Our approach still differs from such inference with spatial data, since the latter

routinely assumes the index set to be a Euclidean metric space, whose metric relies solely

on the nature of the space, and uses it to define the dependence between variables. See also

Ibragimov and Müller (2010) and references therein. In our context, however, the index set of

dyads alone does not suffice to dictate the dependence structure because indices themselves

do not inform us of the network topology. Instead, we first introduce a metric on a network

among dyads and our mixing condition is based on dependence as dyads grow further apart

along the network.

Our main insight in accommodating indirect spillovers is that we can rewrite the corre-

lation structure among dyads as a dyadic network, where links denote whether they share a
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common member. As a result, this dyadic network describes how close/far certain dyads are

from sharing members with other dyads. In doing so, the transformed problem is amenable

to appropriate applications of recent developments in the statistics of random variables which

are correlated along an (observable, exogenous) network. In particular, we apply asymptotic

results for network-dependent random variables developed by Kojevnikov et al. (2021)23 to

an appropriately defined dyadic network, with assumptions imposed on the latter. Leung

(2021) and Leung (2022) also apply the framework of Kojevnikov et al. (2021) to study,

respectively, cluster-robust inference and causal inference for the case of individual-specific

random variables. These papers focus on the correlation along a network over individuals,

rather than over dyads. Meanwhile, Leung and Moon (2021) derive an asymptotic theory

for dyadic variables in the context of networks, primarily for endogenous network formation

models.

B Proofs of Main Theorems and Results

B.1 Identification of β

Assumption B.1. For each N ∈ N:

(a) supm∈MN
E
[
|εM,m|2

]
exists and is finite;

(b) supm∈MN
E
[
‖xM,m‖

]
exists and is finite;

(c) E
[
xM,mx

′
M,m

]
exists with finite elements and positive definite for all m ∈MN ;

(d) E
[
εM,m | XM

]
= 0 for all m ∈MN .

Assumption B.1 (a) and (b) are standard and jointly imply the finite existence of the

second moment of yM,m for all m ∈ MN , which in turn implies the finite existence of the

cross moment of yM,m and xM,m for all m ∈MN . The third and fourth assumptions are also

standard in the context of the linear regression models and require no multicolinearity and

strict exogeneity, respectively.

Identification of the linear parameter in equation (1) follows from Assumption B.1 (see

Proposition B.1 in Appendix B.1).

Proposition B.1 (Identification). Under Assumption B.1, the regression parameter β in

(1) is identified.

Proof. For each m ∈MN , premultiply the model (1) by xM,m to obtain

xM,myM,m = xM,mx
′
M,mβ + xM,mεM,m ∀m ∈MN .

23Vainora (2020) provides another such theoretical contribution.
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Taking the expectation with respect to {(xM,m, yM,m, εM,m)}m∈MN
implies:

E
[
xM,myM,m

]
= E

[
xM,mx

′
M,m

]
β + E

[
xM,mεM,m

]
.

The second term on the right hand side is equal to 0, due to Assumption B.1 (d). Next,

Assumption B.1 (c) ensures existence of the inverse of the expectation term in the first term

of the right hand side, ensuring identification.

B.2 Consistency of β̂

As usual, the Central Limit Theorem for a normalized sum requires us to have stronger

conditions than what is required for consistency. Those stronger conditions were introduced

in the main text as Assumptions 3.2 and 3.3. However, they are only required for Theorem

3.2. For the consistency proof (Theorem 3.1),we can replace those two assumptions by the

following weaker conditions.

Assumption B.2. There exists η > 0 such that supN≥1 maxm∈MN
E
[
|εM,m|1+η | CM

]
<∞.

Assumption B.2 allows for the same interpretation as Assumption 3.2, i.e., the random

error term εm cannot be too large, conditional on a common component. This assumption,

however, is less stringent than the previous one because it now requires the finiteness of a

lower moment of εm.

Assumption B.3. 1
M

∑
s≥1 δ

∂
M(s; 1)θM,s

a.s.→ 0 as M →∞.

Similar to Assumption 3.3, this assumption binds the covariance of the random variables,

the dependence reflected in the dependence coefficients, and the underlying network. That is,

given σM growing at least at the same rate of M , the composite of the density of the network

and the magnitude of the correlations of the random variables must decay fast enough.

Proof of Theorem 3.1: From (8), (12) and (13), we can write

β̂ − β =
( ∑
j∈MN

xM,jx
′
M,j

)−1 ∑
m∈MN

xM,mεM,m

=
( 1

M

∑
j∈MN

xM,jx
′
M,j

)−1 1

M

∑
m∈MN

YM,m

=
1

M

∑
m∈MN

( 1

M

∑
j∈MN

xM,jx
′
M,j

)−1

YM,m.
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Define ỸM,m :=
(

1
M

∑
j∈MN

xM,jx
′
M,j

)−1

YM,m and let Ỹ u
M,m be the u-th entry of ỸM,m. That

is,

Ỹ u
M,m = DuYM,m

= DuxM,mεM,m,

where Du stands for the u-th row of the matrix
(

1
M

∑
j∈MN

xM,jx
′
M,j

)−1
. Moreover, let β̂u

and βu, respectively, denote the u-th entry of β̂ and β, so that we can write

β̂u − βu =
1

M

∑
m∈MN

Ỹ u
M,m,

In light of Assumption B.1 (d), it holds that for any N > 0 and for each m ∈MN

E
[
Ỹ u
M,m | CM

]
= DuxM,mE

[
εM,m | CM

]︸ ︷︷ ︸
0

= 0.

By Theorem 3.1 of Kojevnikov et al. (2021),
∥∥∥ 1
M

∑
m∈MN

(
Ỹ u
M,m−E

[
Ỹ u
M,m | CM

]︸ ︷︷ ︸
0

)∥∥∥
CM ,1

a.s.→ 0.

Hence, ∥∥∥ 1

M

∑
m∈MN

Ỹ u
M,m

∥∥∥
CM ,1

a.s.→ 0 M →∞,

so that

E
[∣∣β̂u − βu∣∣] = E

[
E
[
|β̂u − βu| | CM

]]
= E

[
‖β̂u − βu‖CM ,1

]
= E

[∥∥∥ 1

M

∑
m∈MN

Ỹ u
M,m

∥∥∥
CM ,1

]
→ 0 M →∞,

where the last implication is a consequence of the Dominated Convergence Theorem. In view

of Assumption 3.1, this is true also with respect to N going to infinity.
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Since it holds by the Markov inequality that for any c > 0

Pr
(
|β̂u − βu| > c

)
≤
E
[
|β̂u − βu|

]
c

,

it then follows that

Pr
(
|β̂u − βu| > c

)
→ 0,

as N →∞. Hence we have

|β̂u − βu| p→ 0 as N →∞.

Finally, we can invoke the Cramér-Wold device to obtain

‖β̂ − β‖2
p→ 0 as N →∞,

as desired. �

B.3 Lemma

Here we establish a lemma that is used repeatedly throughout the subsequent proofs in this

paper.

Lemma B.1. Define A := limN→∞
1
M

∑
k∈ME

[
xM,kx

′
M,k

]
and assume that Assumptions 3.1

and 3.5 hold.

(i) A−1 := limN→∞

(
1
M

∑
k∈ME

[
xM,kx

′
M,k

])−1

exists with finite elements and positive def-

inite.

(ii) Suppose, moreover, that Assumption 3.7 holds. Then,
∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

−(
1
M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1∥∥∥
F

p→ 0.

Proof. (i) The fact that it is positive definite follows from Assumption 3.5. The fact that

the elements are finite is proved by considering element-by-element convergence. Let xk,i

denote the i-th element of xM,k. Then the (i, j) entry of 1
M

∑
k∈ME

[
xM,kx

′
M,k

]
is given by:

1
M

∑
k∈ME

[
xk,ixk,j

]
.

We write the (i, j) entry of A as Ai,j.

From Assumption 3.5, there exists a nonnegative finite constant C0,1 such that

C0,1 = sup
N≥1

max
m∈MN

E
[
xm,ixm,j

]
,
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so that

Ai,j = lim
N→∞

1

M

∑
k∈MN

E
[
xk,ixk,j

]︸ ︷︷ ︸
≤C0,1

≤ lim
N→∞

1

M

∑
k∈MN

C0,1

= C0,1 lim
N→∞

1

M

∑
k∈MN

1

︸ ︷︷ ︸
M

= C0,1.

Hence Ai,j exists with being finite. By repeating the same argument for all i, j = 1, . . . , K,

it holds that A exists with finite elements.

(ii) To begin with, observe that∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

−
( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1∥∥∥
F

=
∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

− A−1 + A−1 −
( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1∥∥∥
F

≤
∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

− A−1
∥∥∥
F

+
∥∥∥A−1 −

( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1∥∥∥
F
.

Note that convergence of the second term follows from (i). Hence, we wish to prove that:∥∥∥ 1

M

∑
k∈MN

xM,kx
′
M,k − A

∥∥∥
F

p→ 0

To do so, we follow a strategy employed in Aronow et al. (2015) and Tabord-Meehan

(2019). In light of (i), it remains to show

V ar
( 1

M

∑
k∈MN

xM,kx
′
M,k

)
→ 0.

As in (i), we consider the element-by-element convergence, using the same notation. The

variance can be expressed as a sum of covariances:
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V ar
( 1

M

∑
k∈MN

xk,ixk,j

)
=

1

M2

∑
m∈MN

∑
m′∈MN

Cov
(
xm,ixm,j, xm′,ixm′,j

)
=

1

M2

∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s)

Cov
(
xm,ixm,j, xm′,ixm′,j

)
.

Again from Assumption 3.5, there exists a nonnegative finite constant C0,2 such that

C0,2 = sup
N≥1

max
m,m′∈MN

Cov (xm,ixm,j, xm′,ixm′,j) .

Hence,

V ar
( 1

M

∑
k∈MN

xk,ixk,j

)
≤ 1

M2

∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s)

C0,2

=
C0,2

M2

∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s)

1

=
C0,2

M2

∑
s≥0

Mδ∂M(s; 1)

= C0,2
1

M

∑
s≥0

δ∂M(s; 1)︸ ︷︷ ︸
→0

→ 0,

where the last implication is due to Assumption 3.7. By repeating the same argument for

all i, j = 1, . . . , K, we obtain

V ar
( 1

M

∑
k∈MN

xM,kx
′
M,k

)
→ 0.

Now, by the Chebyshev’s inequality, we arrive at∥∥∥ 1

M

∑
k∈MN

xM,kx
′
M,k − A

∥∥∥
F

p→ 0.
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Furthermore, applying the Continuous Mapping Theorem yields∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

− A−1
∥∥∥
F

p→ 0,

obtaining the result. Therefore,∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

−
( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1∥∥∥
F

p→ 0,

as desired.

B.4 Asymptotic Normality of β̂

In this subsection, we prove Theorem 3.2 under a slightly milder condition than Assumption

3.4.

Assumption B.4 (Growth Rates of Variances). There exists a sequence of (possibly random)

positive numbers, {πN,M}N>0, such that

σ2
M

πN,Mτ 2
M

a.s.→ 1 as N →∞.

When πN,M = 1, this assumption simplifies to Assumption 3.4, which is used for the

results in the main text.

For our proof of the asymptotic distribution of β̂, we require that its asymptotic variance

is well-defined. The first assumption, Assumption 3.5(a)-(b), is necessary for one of the

matrices in the expression to be well-defined.24 Part (c) assures that the middle part of the

asymptotic variance is non-trivial.

When Assumption 3.4 is replaced by Assumption B.4, Assumption 3.5 must also be

modified accordingly.

Assumption B.5. limN→∞
NπN,M
M2

∑
m∈MN

∑
m′∈MN

E
[
εM,mεM,m′xM,mx

′
M,m′

]
exists with fi-

nite elements.

An important comparison of Assumption B.5 can be made to the variety of assumptions

used in the literature.

24As pointed out in Tabord-Meehan (2019), the bounded support assumption can be relaxed by imposing
an alternative condition on higher-order moments (boundedness of the 16th order moment of xM,m, in our
case).
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Remark B.1. The requirement on the behavior of AV ar(β̂) mirrors Assumptions 2.4, 2.5

and 2.6 of Tabord-Meehan (2019): Assumption B.5 boils down to his Assumption 2.4, if it

is well-defined with πN,M = M
N

; it reduces to his Assumption 2.5, if it is compatible with

πN,M = M
N2 ; and it coincides with Assumption 2.6, if it is maintained with πN,M = M

Nr+1 for

r ∈ [0, 1]. Moreover, if AV ar(β̂) is well-defined for πN,M = 1, the expression (15) simplifies

to the assumption that appears in Lemma 1 of Aronow et al. (2015).

Proof of Theorem 3.2: From (13),

√
N(β̂ − β) =

( 1

M

∑
j∈MN

xM,jx
′
M,j

)−1
√
N

M

∑
m∈MN

YM,m

=
( 1

M

∑
j∈MN

xM,jx
′
M,j

)−1
√
N

M
SM .

Since
(

1
M

∑
j∈MN

xM,jx
′
M,j

)−1
converges to a well-defined limit (Lemma B.1), the asymptotic

distribution of
√
N(β̂ − β) is dictated by that of

√
N
M
SM .

First of all, we prove

SuM
σM

d→ N (0, 1),

as N →∞. Consider the scenario that N →∞, in which Assumption 3.1 implies M →∞.

Denote S̃uM :=
SuM
σM

. Let X be the M × K matrix that records the observed dyad-specific

characteristics as defined in Section 2.1.1, but here the subscript M is omitted for notational

simplicity. The value that X takes is denoted by x.

Under Assumptions 3.2 and 3.3, it holds by Theorem 3.2 of Kojevnikov et al. (2021) that

for any ε > 0, there exists M0 > 0 such that for each M > M0 and for each x ∈ RM×K ,

sup
t∈R

∣∣Pr(S̃uM ≤ t | X = x)− Φ(t)
∣∣ < ε, (20)

where Φ(·) is the CDF of a standard Normal distribution. Then, by the law of total proba-

bility, we have

∣∣Pr(S̃uM ≤ t)− Φ(t)
∣∣ =

∣∣∣ ∫ Pr(S̃uM ≤ t | X = x)dFX(x)− Φ(t)
∣∣∣

=
∣∣∣ ∫ Pr(S̃uM ≤ t | X = x)− Φ(t)dFX(x)

∣∣∣
≤
∫ ∣∣Pr(S̃uM ≤ t | X = x)− Φ(t)

∣∣dFX(x)
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≤
∫

sup
t∈R

∣∣Pr(S̃uM ≤ t | X = x)− Φ(t)
∣∣dFX(x), (21)

where FX(·) denotes the probability distribution function of X. Now pick arbitrarily ε > 0.

Then there exists M0 > 0 such that for each M > M0∣∣Pr(S̃uM ≤ t)− Φ(t)
∣∣ ≤ ∫ sup

t∈R

∣∣Pr(S̃uM ≤ t | X = x)− Φ(t)
∣∣︸ ︷︷ ︸

<ε

dFX(x)

≤
∫
εdFX(x)

≤ ε, (22)

where the first and second inequalities come from (21) and (20), respectively. Since the right

hand side of (22) does not depend on t, we then have that for each M > M0,

sup
t∈R

∣∣Pr(S̃uM ≤ t)− Φ(t)
∣∣ ≤ ε,

which implies

sup
t∈R

∣∣Pr(S̃uM ≤ t)− Φ(t)
∣∣→ 0 as M →∞,

We have then shown that

sup
t∈R

∣∣Pr(S̃uM ≤ t)− Φ(t)
∣∣→ 0 as N →∞,

from which we obtain

SuM
σM

d→ N (0, 1) as N →∞.

Next this can be combined with Assumption B.4 by using the Slutsky’s Theorem, yielding

that

SuM
τM
√
πN,M

d→ N (0, 1) as N →∞.

Moreover, applying the Cramér-Wold device gives

τ−1
M√
πN,M

SM
d→ N (0, IK) as N →∞,
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where IK is the K × K identity matrix and τM is understood as the variance-covariance

matrix.25

Now notice that we have

√
N(β̂ − β) =

( 1

M

∑
j∈MN

xM,jx
′
M,j

)−1
√
N

M
τM
√
πN,M

τ−1
M√
πN,M

SM,m︸ ︷︷ ︸
d→N (0,IK)

.

Hence we obtain

√
N
(
β̂ − β

) d→ N (0, AV ar(β̂)) as N →∞,

where

AV ar(β̂) := lim
N→∞

NπN,M

( ∑
k∈MN

E
[
xM,kx

′
M,k

])−1( ∑
m∈MN

∑
m′∈MN

E
[
εM,mεM,m′xM,mx

′
M,m′

])( ∑
k∈MN

E
[
xM,kx

′
M,k

])−1
,

which is well-defined due to Lemma B.1 (i) along with Assumption B.5. When πN,M = 1,

this is the result in the main text. �

B.5 Lemma

In the proof of Theorem 3.3, we make use of the following lemma from Kojevnikov et al.

(2021), p.903:

Lemma B.2. Define

HM(s, r) := {(m, j, k, l) ∈M4
N : j ∈MN(m; r), l ∈MN(k; r), ρM({m, j}, {k, l}) = s}.

Then

|HM(s, r)| ≤ 4McM(s, r; 2).

25To save notation, we use the same τM to denote the case of one-dimensional parameter and the case of
multiple-dimensional parameters.
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B.6 Consistency of V̂ ar(β̂)

Proof of Theorem 3.3: Denote the variance of SM√
M

as VN,M := V ar
(
SM√
M

)
. It can readily

be shown that VN,M takes the form of VN,M =
∑

s≥0 ΩN,M(s), where

ΩN,M(s) :=
1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
YM,mY

′
M,j

]
.

Following Kojevnikov et al. (2021), we define the kernel heteroskedasticity and autocor-

relation consistent (HAC) estimator of VN,M as V̂N,M :=
∑

s≥0 ωM(s)Ω̂N,M(s),

where ωM(s) := ω
(
s
bM

)
and

Ω̂N,M(s) :=
1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

ŶM,mŶ
′
M,j.

Moreover, we define an empirical analogue of VN,M , though infeasible, by ṼN,M :=∑
s≥0 ωM(s)Ω̃N,M(s), where

Ω̃N,M(s) :=
1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

YM,mY
′

M,j.

Additionally, we denote a conditional version of VN,M by V c
N,M := V ar

(
SM√
M
| CM

)
, i.e.,

V c
N,M =

∑
s≥0 Ωc

N,M(s), where

Ωc
N,M(s) :=

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
YM,mY

′

M,j | CM
]
.

Notice that since E
[
YM,m | CM

]
= 0 a.s., it follows from the law of total variance that

VN,M = E
[
V c
N,M

]
.

Notice furthermore that it holds that

V ar(β̂) =
N

M

( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1

VN,M

( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1

,

and

V̂ ar(β̂) =
1

M

( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

V̂N,M

( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

.

Since
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‖NV̂ ar(β̂)− V ar(β̂)‖F =
N

M

∥∥∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

V̂N,M

( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

−
( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1

VN,M

( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1

∥∥∥∥∥
F

,

and N
M

is bounded due to Assumption 3.1, it thus suffices to show that

(i)
∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1 −
(

1
M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1
∥∥∥
F

p→ 0;

(ii) ‖V̂N,M − VN,M‖F
p→ 0.

Part (i) is already shown in Lemma B.1 (ii). Hence, it remains to prove Part (ii).

To begin with, observe that by the technique of add and subtract as well as the triangular

inequality,

‖V̂N,M − VN,M‖F = ‖V̂N,M − ṼN,M + ṼN,M − V c
N,M + V c

N,M − VN,M‖F
≤ ‖V̂N,M − ṼN,M‖F + ‖ṼN,M − V c

N,M‖F + ‖V c
N,M − VN,M‖F .

We thus aim to prove

(1) ‖V c
N,M − VN,M‖F

p→ 0;

(2) ‖ṼN,M − V c
N,M‖F

p→ 0;

(3) ‖V̂N,M − ṼN,M‖F
p→ 0.

We start with:

(1) ‖V c
N,M − VN,M‖F

p→ 0:

The proof proceeds in multiple steps:

(a) E
[∥∥V c

N,M − VN,M
∥∥2

F

]
→ 0;

(b)
∥∥V c

N,M − VN,M
∥∥
F

p→ 0.

We begin with:

(a) E
[∥∥V c

N,M − VN,M
∥∥2

F

]
→ 0:

We prove this by showing the element-wise convergence. With a slight abuse of
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notation, we denote the (a, b) entry of V c
N,M and VN,M as V c

a,b and Va,b, respectively.

Then it is enough to verify that

E
[
(V c

a,b − Va,b)2
]
→ 0.

Notice that V c
a,b and Va,b are given by

V c
a,b =

∑
s≥0

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
Ym,aYj,b | CM

]
and

Va,b =
∑
s≥0

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
Ym,aYj,b

]
,

where Ym,a and Ym,b stand for the a-th and b-th element of YM,m, respectively.

Note moreover that E[V c
a,b] = Va,b. Hence, we can write

E
[
(V c

a,b − Va,b)2
]

= V ar(V c
a,b)

= E
[
(V c

a,b)
2
]
−
(
Va,b
)2

≤ E
[
(V c

a,b)
2
]
.

Observe that

E
[
(V c

a,b)
2
]

= E
[(∑

s≥0

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
Ym,aYj,b | CM

])2]
= E

[ 1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

E
[
Ym,aYj,b | CM

]
E
[
Yk,aYl,b | CM

]]
=

1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

E
[
E
[
Ym,aYj,b | CM

]
E
[
Yk,aYl,b | CM

]]
.

By the Cauchy-Schwartz inequality,

E
[
εmεj | CM

]
≤
(
E
[
ε2
m | CM

]) 1
2
(
E
[
ε2
m | CM

]) 1
2 ,

it then follows from from Assumption 3.6 (a) that there exists an a.s.-bounded

function C̄1 such that E
[
εmεj | CM

]
≤ C̄1 a.s. Similarly, we have an a.s.-bounded
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function C̄2 such that E
[
εkεl | CM

]
≤ C̄2 a.s. Then,

E
[
Ym,aYj,b | CM

]
= E

[
εmεjxm,axj,b | CM

]
= xm,axj,bE

[
εmεj | CM

]︸ ︷︷ ︸
≤C̄1

≤ xm,axj,bC̄1 a.s.,

where xm,a represents the a-th element of xM,m and xj,b the b-th element of xM,j.

Analogously, one obtains E
[
Yk,aYl,b | CM

]
≤ xk,axl,bC̄2 a.s. Once again, through

the multiple application of the Cauchy-Schwartz inequality, it follows that

E
[
E
[
Ym,aYj,b | CM

]
E
[
Yk,aYl,b | CM

]]
≤ E

[
C̄1C̄2xm,axj,bxk,axl,b

]
≤
(
E
[
(C̄1C̄2)2

]) 1
2
(
E
[
(xm,axj,bxk,axl,b)

2
]) 1

2

≤
(
E
[
(C̄1)4

]) 1
4
(
E
[
(C̄2)4

]) 1
4

×
(
E
[
x8
m,a

]) 1
8
(
E
[
x8
j,b

]) 1
8
(
E
[
x8
l,a

]) 1
8
(
E
[
x8
l,b

]) 1
8 .

We note here that Assumption 3.5 ensures that there exists a nonnegative finite

constant Cm,a such that E
[
x8
l,a

]
< Cm,a, with the same argument holding true for

xj,b, xk,a and xl,b as well. Hence,

E
[
E
[
Ym,aYj,b | CM

]
E
[
Yk,aYl,b | CM

]]
≤ C̄,

where C̄ is a nonnegative finite constant that is appropriately defined.

Substituting this into the inequality above,

E
[
(V c

a,b)
2
]
≤ 1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

C̄

=
C̄

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

1

=
C̄

M2

∑
s≥0

∑
(m,j,k,l)∈HM (s;bM )

1

=
C̄

M2

∑
s≥0

|HM(s; bM)|︸ ︷︷ ︸
≤4McM (s,bM ;2)

≤ C̄

M2

∑
s≥0

4McM(s, bM ; 2)
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= 4C̄
1

M

∑
s≥0

cM(s, bM ; 2)︸ ︷︷ ︸
→0

→ 0,

where the second inequality comes from Lemma B.2, and the last implication is

due to Assumption 3.7. Therefore we have shown that

E
[
(V c

a,b − Va,b)2
]
→ 0.

By repeating the same argument for each a, b = 1, . . . , K, it follows that

E
[
‖V c

N,M − VM,M‖2
F

]
→ 0.

(b)
∥∥V c

N,M − VN,M
∥∥
F

p→ 0:

By the Chebyshev’s inequality and the result of part (a), we complete part (1) as

it follows that for any η > 0,

Pr(
∥∥V c

N,M − VN,M
∥∥
F
> η) <

1

η2
E
[∥∥V c

N,M − VN,M
∥∥2

F

]
︸ ︷︷ ︸

→0

→ 0.

(2) ‖ṼN,M − V c
N,M‖F

p→ 0:

This immediately follows from applying Proposition 4.1 of Kojevnikov et al. (2021)26

and the Dominated Convergence Theorem in the Markov inequality: i.e.,

Pr
(
‖ṼN,M − V c

N,M‖F ≥ η
)
≤ 1

η
E
[
‖ṼN,M − V c

N,M‖F
]

=
1

η
E
[
E
[
‖ṼN,M − V c

N,M‖F | CM
]︸ ︷︷ ︸

a.s.→ 0

]
→ 0,

for any η > 0.

(3) ‖V̂N,M − ṼN,M‖F
p→ 0:

26Notice that the definitions of VN,M , V̂N,M , ṼN,M and V c
N,M are slightly different from those used in

Proposition 4.1 of Kojevnikov et al. (2021).
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First, we have27

∥∥V̂N,M − ṼN,M

∥∥
F

=

∥∥∥∥∥∑
s≥0

ωM (s)
1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

ε̂mε̂jxmx
′
j −

∑
s≥0

ωM (s)
1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

εmεjxmx
′
j

∥∥∥∥∥
F

=

∥∥∥∥∥∑
s≥0

ωM (s)
1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

(
ε̂mε̂j − εmεj

)
xmx

′
j

∥∥∥∥∥
F

≤

∥∥∥∥∥∑
s≥0

|ωM (s)|︸ ︷︷ ︸
≤1

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

(
ε̂mε̂j − εmεj

)
xmx

′
j

∥∥∥∥∥
F

≤

∥∥∥∥∥∑
s≥0

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

(
ε̂mε̂j − εmεj

)
xmx

′
j

∥∥∥∥∥
F

≤
∑
s≥0

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

∣∣ε̂mε̂j − εmεj∣∣∥∥xmx′j∥∥F .
Observe that, by definition, ε̂m can be written as ε̂m = εm − x′m(β̂ − β). Hence

ε̂mε̂j − εmεj = −εm(β̂ − β)′xj − x′m(β̂ − β)εj + x′m(β̂ − β)(β̂ − β)′xj,

so that by the triangular inequality,

∣∣ε̂mε̂j − εmεj∣∣ ≤ ∥∥β̂ − β∥∥2

∥∥xj∥∥2

∣∣εm∣∣+
∥∥β̂ − β∥∥

2

∥∥xm∥∥2

∣∣εj∣∣+
∥∥β̂ − β∥∥2

2

∥∥xm∥∥2

∥∥xj∥∥2
,

for each m, j ∈MN . Hence ‖V̂N,M − ṼN,M‖F can be bounded as

∥∥V̂N,M − ṼN,M

∥∥
F

≤
∥∥β̂ − β∥∥

2

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖2‖xj‖22|εm|+
∥∥β̂ − β∥∥

2

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖22‖xj‖2|εj |

+
∥∥β̂ − β∥∥2

2

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖22‖xj‖22.

Denote

RN,1 :=
1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖2‖xj‖2
2|εm|;

RN,2 :=
1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖2
2‖xj‖2|εj|;

27To lighten the notational burden, we drop the M subscript from {xM,m}m∈MN
and {εM,m}m∈MN

in
the rest of the proof.
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RN,3 :=
1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖2
2‖xj‖2

2.

Now, since by Theorem 3.1, ‖β̂ − β‖2

p→ 0, and the application of the Continuous

Mapping Theorem yields ‖β̂ − β‖2
2

p→ 0, it thus suffices to prove that each of RN,1,

RN,2 and RN,3 converges in probability to a finite number. In proving this, we follow a

strategy employed in Aronow et al. (2015) and Tabord-Meehan (2019).

First let us study the expectation of RN,1. By applying the Cauchy-Schwartz in-

equality repeatedly, we have that

E
[
RN,1

]
≤ 1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

((
E
[
‖xm‖2

2

]) 1
2
(
E
[
‖xj‖8

2

]) 1
2
) 1

2
(
E
[
E
[
|εm|2 | CM

]]) 1
2 .

Here, in light of Assumption 3.6, there exists an a.s.-bounded function C1 such that

C1 = supN≥1 maxm∈MN
E
[
|εm|2 | CM

]
, and moreover by Assumption 3.5, there exists

a nonnegative finite number C2 > 0 such that C2 = supN≥1 maxm∈MN
E
[
‖xm‖8

2

]
.

With a slight abuse of notation, we have for every N > 0

E [RN,1] ≤ 1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

C1C2

=
C1C2

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

1

= C1C2

∑
s≥0

1

M

∑
m∈MN

|M∂
N(m; s)|︸ ︷︷ ︸

δ∂M (s;1)

= C1C2

∑
s≥0

δ∂M(s; 1)︸ ︷︷ ︸
<∞

< C,

for some constant C ∈ (0,∞), where the last inequality is because of Assumption 3.7.

Next let us study the variance of RN,1. It suffices to show that E
[
R2
N,1

]
→ 0, By the

Cauchy-Schwartz inequality, it holds that

E
[
R2

N,1

]
= E

[ 1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

‖xm‖2‖xj‖22‖xk‖2‖xl‖22|εm||εk|
]
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≤ 1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

(
E
[
‖xm‖22‖xj‖42‖xk‖22‖xl‖42

]) 1
2
(
E
[
|εm|2|εk|2

]) 1
2 .

Here, by Assumption 3.5 and the Cauchy-Schwartz inequality, there exists a nonnega-

tive finite constant C3 > 0 such that C3 = supN≤1 maxm,j,k,l∈MN
E
[
‖xm‖2

2‖xj‖4
2‖xk‖2

2‖xl‖4
2

]
.

Then, with a slight abuse of notation in writing C
1
2
3 as C3, we have

E
[
R2
N,1

]
=

C3

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

(
E
[
|εm|2|εk|2

]) 1
2

=
C3

M2

∑
s≥0

∑
(m,j,k,l)∈HM (s;bM )

(
E
[
E
[
|εm|2|εk|2 | CM

]]) 1
2 .

Corollary A.2 of Kojevnikov et al. (2021) shows that there exists a nonnegative finite

constant C4 such that E
[
|εm|2|εk|2 | CM

]
≤ C4θ̄θ

1− 4
p

M,s , where θ̄ := supM≥1 maxs≥1 θM,s.

Upon applying Lemma B.2 from the Appendix, we obtain

E
[
R2
N,1

]
≤ C3C

′
4

M2

∑
s≥0

(
E
[
θ

1− 4
p

M,s

]) 1
2 4McM(s, bM ; 2) =

4C3C
′′
4

M

∑
s≥0

cM(s, bM ; 2)→ 0,

where we apply Assumption 3.7 for the last implication, and C ′4 and C ′′4 are nonnegative

finite constants defined appropriately. Hence we have shown that RN,1 converges to a

finite constant.

The proof of RN,2 is analogous.

It remains to show that RN,3 converges in probability to a finite constant. Let us

first study the expectation of RN,3. Observe that

E
[
RN,3

]
=

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
‖xm‖2

2‖xj‖2
2

]
.

By Assumption 3.5, there exists a nonnegative finite number C5 > 0 such that C5 =

supN≥1 maxm∈MN
E
[
‖xm‖2

2‖xj‖2
2

]
. Hence for every N > 0,

E
[
RN,3

]
=

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
‖xm‖2

2‖xj‖2
2

]
︸ ︷︷ ︸

≤C5

≤ 1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

C5

=
C5

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

1
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= C5

∑
s≥0

1

M

∑
m∈MN

|M∂
N(m; s)|︸ ︷︷ ︸

δ∂M (s;1)

= C5

∑
s≥0

δ∂M(s; 1)︸ ︷︷ ︸
<∞

< C,

where we apply Assumption 3.7 in the last implication and a constant C ∈ (0,∞) is

appropriately defined.

Next let us consider the variance of RM,3:

E
[
R2
N,3

]
=

1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

E
[
‖xm‖2

2‖xj‖2
2‖xk‖2

2‖xl‖2
2

]
.

Once again, Assumption 3.5 and the Cauchy-Schwartz inequality imply that there

exists a nonnegative finite number C6 > 0 such that C6 = supN≥1 maxm,j,k,l∈MN

E
[
‖xm‖2

2‖xj‖2
2‖xk‖2

2‖xl‖2
2

]
. Then by Lemma B.2,

E
[
R2
N,3

]
≤ 1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

C6 =
4C6

M

∑
s≥0

cM(s, bM ; 2)→ 0,

where the last implication is a consequence of Assumption 3.7 (ii).

Therefore we have shown that

∥∥V̂N,M − ṼN,M

∥∥
F

≤
∥∥β̂ − β∥∥

2

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖2‖xj‖22|εm|︸ ︷︷ ︸
RM,1

+
∥∥β̂ − β∥∥

2

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖22‖xj‖2|εj |︸ ︷︷ ︸
RM,2

+
∥∥β̂ − β∥∥2

2

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖22‖xj‖22︸ ︷︷ ︸
RM,3

=
∥∥β̂ − β∥∥

2︸ ︷︷ ︸
p→0

RM,1︸ ︷︷ ︸
<∞

+
∥∥β̂ − β∥∥

2︸ ︷︷ ︸
p→0

RM,2︸ ︷︷ ︸
<∞

+
∥∥β̂ − β∥∥2

2︸ ︷︷ ︸
p→0

RM,3︸ ︷︷ ︸
<∞

p→ 0,

which proves ‖V̂N,M − ṼN,M‖F
p→ 0.
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To sum up, combining parts (1), (2) and (3), we have

‖V̂N,M − VN,M‖F ≤ ‖V̂N,M − ṼN,M‖F︸ ︷︷ ︸
p→0

+ ‖ṼN,M − V c
N,M‖F︸ ︷︷ ︸

p→0

+ ‖V c
N,M − VN,M‖F︸ ︷︷ ︸

p→0

p→ 0,

which completes the proof. �

B.7 Corollary 3.1

Proof of Corollary 3.1: For simplicity we denote

V̂ Dyad
N,M :=

( ∑
m∈MN

xmx
′
m

)−1( ∑
m∈MN

∑
m′∈MN

1m,m′ ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1

,

and

V̂ Network
N,M :=

( ∑
m∈MN

xmx
′
m

)−1( ∑
m∈MN

∑
m′∈MN

hm,m′ ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1

, 28

where we choose the kernel function and the lag truncation parameter so that the weights

become equal one for all active dyads: namely, we use the mean-shifted rectangular kernel

with the lag truncation being the length of the longest path in the network. Define moreover

Ṽ ar(β̂) to be the same variance as in the main text —

N
(

1
M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1(
1
M2

∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s) E
[
YM,mY

′
M,m′

])(
1
M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1

,

but now applied to the network-regression model (1) and (2). By the triangular inequality,

∥∥NV̂ Network
N,M −NV̂ Dyad

N,M

∥∥
F

=
∥∥NV̂ Network

N,M − Ṽ ar(β̂) + Ṽ ar(β̂)−NV̂ Dyad
N,M

∥∥
F

≤
∥∥NV̂ Network

N,M − Ṽ ar(β̂)
∥∥
F

+
∥∥Ṽ ar(β̂)−NV̂ Dyad

N,M

∥∥
F
.

Since Theorem 3.3 implies
∥∥NV̂ Network

N,M − Ṽ ar(β̂)
∥∥
F

p→ 0, then in the limit we are left

with

∥∥NV̂ Network
N,M −NV̂ Dyad

N,M

∥∥
F
≤
∥∥Ṽ ar(β̂)−NV̂ Dyad

N,M

∥∥
F
. (23)

Now we prove the statement by way of contradiction. Assume for the sake of contradiction
that the dyadic-robust variance estimator V̂ Dyad

N,M is consistent, i.e.,
∥∥Ṽ ar(β̂)−NV̂ Dyad

N,M

∥∥
F

p→ 0.

This, combined with the inequality (23), implies
∥∥NV̂ Network

N,M −NV̂ Dyad
N,M

∥∥
F

p→ 0. Now, observe

28For the sake of brevity, we suppress the M from subscript throughout this proof.
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that

∥∥NV̂ Network
N,M −NV̂ Dyad

N,M

∥∥
F

=
∥∥∥N( ∑

m∈MN

xmx
′
m

)−1( ∑
m∈MN

∑
m′∈MN

hm,m′ ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1
−N

( ∑
m∈MN

xmx
′
m

)−1( ∑
m∈MN

∑
m′∈MN

1m,m′ ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1∥∥∥
F

=
∥∥∥N( ∑

m∈MN

xmx
′
m

)−1(∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s)

hm,m′ ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1
−N

( ∑
m∈MN

xmx
′
m

)−1(∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s)

1m,m′ ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1∥∥∥
F

=
∥∥∥N( ∑

m∈MN

xmx
′
m

)−1( ∑
s={0,1}

∑
m∈MN

∑
m′∈M∂

N (m;s)

(
hm,m′ − 1m,m′

)
︸ ︷︷ ︸

0

ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1
+N

( ∑
m∈MN

xmx
′
m

)−1(∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

(
hm,m′︸ ︷︷ ︸

1

−1m,m′︸ ︷︷ ︸
0

)
ε̂mε̂m′xmx

′
m′

)( ∑
m∈MN

xmx
′
m

)−1∥∥∥
F

=
∥∥∥N( ∑

m∈MN

xmx
′
m

)−1(∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1∥∥∥
F

=
N

M

∥∥∥( 1

M

∑
m∈MN

xmx
′
m

)−1( 1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

ε̂mε̂m′xmx
′
m′

)( 1

M

∑
m∈MN

xmx
′
m

)−1∥∥∥
F
.

We prove that the inside the Frobenius norm does not converge in probability to zero.

First it can immediately be shown, by Lemma B.1 (ii), that the “bread” part
(

1
M

∑
m∈MN

xmx
′
m

)−1

converges to
(

1
M

∑
m∈MN

E
[
xmx

′
m

])−1
.

Next plugging the definition of ε̂ into the middle part, we have

1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

ε̂mε̂m′xmx
′
m′

=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

{
εm + x′m(β − β̂)

}{
εm′ + x′m′(β − β̂)

}
xmx

′
m′

=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

εmεm′xmx
′
m′ + εm(β − β̂)xm′xmx

′
m′ + x′m(β − β̂)εm′xmx

′
m′ + x′m(β − β̂)(β − β̂)′xm′xmx

′
m′

=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

εmεm′xmx
′
m′ +

1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

εm(β − β̂)xm′xmx
′
m′

+
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

x′m(β − β̂)εm′xmx
′
m′ +

1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

x′m(β − β̂)(β − β̂)′xm′xmx
′
m′ .

Denote

QM,1 :=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

εmεm′xmx
′
m′
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QM,2 :=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

εm(β − β̂)xm′xmx
′
m′

QM,3 :=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

x′m(β − β̂)εm′xmx
′
m′

QM,4 :=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

x′m(β − β̂)(β − β̂)′xm′xmx
′
m′ .

From Theorem 3.1, it can be seen that QM,2, QM,3 and QM,4 either converge to zero or

diverge as N goes to infinity. When it comes to QM,1, observe that

E
[
QM,1

]
= E

[ 1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

εmεm′xmx
′
m′

]
=

1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

E
[
εmεm′xmx

′
m′

]
,

which never equals to zero due to the hypothesis (17) of this corollary. In either case, the mid-

dle part does not converge in probability to zero, meaning that
∥∥NV̂ Network

N,M −NV̂ Dyad
N,M

∥∥
F

p→ 0

is not true. This, however, contradicts the implication of the assumption that the dyadic-

robust variance estimator is consistent. Hence, by means of contradiction, we conclude that

the dyadic-robust variance estimator is not consistent, which completes the proof. �

B.8 Example 3.1

Proof of Example 3.1

By the inequality of arithmetic and geometric means, the left-hand side of (17) can be

bounded by

1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

E
[
εM,mεM,m′xM,mxM,m′

]
=
∑
s≥2

γsδ∂M(s)

≥ (S − 1)

(∏
s≥2

γs
)1/(S−1)(∏

s≥2

δ∂M(s)

)1/(S−1)

,

where S ≥ 2 denotes the length of the longest path in the network. As the first and third

terms in both estimators are the same, then using the proposed network-robust estimator

will be desirable if the middle term (i.e., the left-hand side above) is larger than the tolerated
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threshold, B:

(S − 1)

(∏
s≥2

γs
)1/(S−1)(∏

s≥2

δ∂M(s)

)1/(S−1)

> B.

Passing logs on both sides yields the results. The lower bound is attained if γsδ∂M(s) =

γs
′
δ∂M(s′) for all s, s′ = 2, . . . , S. Note that S and the network densities {δ∂M(s)}s≥2 can be

estimated following the definition (14), as a (sample) network is observable.

C Additional Monte Carlo Simulation Results

C.1 Summary Statistics

Table 3 shows summary statistics (i.e., the average and maximum degrees) of the networks

across nodes that are used in our simulation study.

The maximum degree and the average degree increase monotonically as we increase the

parameters in both specifications. The number of active edges (i.e., dyads) also increases

with the sample size regardless of the specification. This reflects that each node tends to have

more direct links as the network becomes denser. In our exercises, the number of indirectly

linked dyads also increases with network denseness. However, this is due to our simulated

networks being relatively sparse. In other settings, the number of indirect connections may

decrease with network density.
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Table 3: Summary Statistics of Networks among Nodes in the Simulations

Specification 1 Specification 2

N ν = 1 ν = 2 ν = 3 λ = 1 λ = 2 λ = 3

500 dmax 23 40 41 5 7 8

dave 0.8020 1.5780 2.3540 0.4760 0.9680 1.4800

1000 dmax 26 36 47 4 7 8

dave 0.8590 1.7000 2.5410 0.4980 0.9810 1.5010

5000 dmax 53 125 130 6 9 10

dave 0.9326 1.8618 2.7910 0.4952 1.0016 1.5114

Notes: Observation units in this table are nodes (individuals) as usual in

the literature. The maximum degree, dmax, means the maximum number of

nodes that are adjacent to a node, and the average degree, dave, is the aver-

age number of nodes adjacent to each node of the network.

Table 4 reports the degree characteristics of the networks when viewed as networks over

the active edges. The table provides the average degree, the maximum degree, and the

number of active edges (i.e., dyads).
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Table 4: Summary Statistics of Networks among Dyads in the Simulations

Specification 1 Specification 2

N ν = 1 ν = 2 ν = 3 λ = 1 λ = 2 λ = 3

500 dact 401 788 1175 238 484 740

dmax 32 45 70 4 9 14

dave 3.6858 6.0063 9.1881 0.9580 2.0248 3.0027

1000 dact 859 1699 2540 498 981 1501

dmax 35 55 76 5 8 10

dave 3.9581 6.7810 9.2047 1.0341 1.9888 2.9594

5000 dact 4663 9305 13952 2476 5008 7557

dmax 74 161 210 7 12 15

dave 5.2989 9.5159 12.8521 1.0137 2.0228 3.0341

Note: Observation units in this table are active edges (dyads), which departs

from the convention. Active edges are edges that are at work in the original

network over the nodes. The number of active edges is denoted by dact. The

maximum degree, dmax, expresses the maximum number of edges that are ad-

jacent to an edge, and the average degree, dave, is the average number of edges

adjacent to each edge of the network.

C.2 Additional Details on the Design

We draw εm :=
∑

m′ γm,m′ηm,m′ , where γm,m′ equals γs if the distance between m and m′ is

s, and 0 otherwise, for γ ∈ [0, 1]29 and s ∈ {1, . . . , S} with S being the maximum geodesic

distance that the spillover propagates to. Each ηm,m′ is drawn i.i.d. from N (0, 1). Hence, γ

controls the strength of spillover effects, representing their decay rate.

C.3 S = 2 and γ = 0.8

In this section, we further discuss the results of the Monte Carlo simulations presented in

the main text. The asymptotic behaviors of the three variance estimators are illustrated in

Figure 2, where the horizontal axes represent the sample size and the vertical axes indicate the

standard error of the regression coefficient. The boxplots show the 25th and 75th percentiles

across simulations, as well as the median, with the whiskers indicating the bounds that are not

29In this simulation, we focus on cases of positive spillovers, as negative spillovers can be analyzed analo-
gously.
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considered as outliers. The whisker length is set to cover ±2.7 times the standard deviation

of the standard-error estimates. The light-, medium- and dark-gray boxplots describe the

distribution of the Eicker-Huber-White, the dyadic-robust and our proposed network-robust

variance estimates across simulations, respectively. The diamonds indicate the empirical

standard errors of the estimates of the regression coefficients, what Aronow et al. (2015)

call the true standard error. It is unsurprising that the empirical standard errors are the

same across different variance estimators, as we use the same β̂. The boxplots show that

as the sample size increases, the variation of the network-robust variance estimator shrinks,

reaching the empirical standard error (the diamonds). This is as expected since this estimator

is consistent for the true variance (Theorem 3.3). The estimates appear to vary little for

moderate sample sizes (e.g., N = 1000). However, the other variance estimators (the light-

and medium-gray boxplots) converge to lower values than the empirical standard errors

(the diamonds), verifying their inconsistency in this environment with network spillovers, as

shown by Corollary 3.1. As we make such spillovers very small (e.g., γ = 0.2 in Appendix

C.5), all estimators have similar performance. This highlights the role of condition (17):

namely, the dyadic-robust variance estimator might perform satisfactorily well as long as

higher-order correlations beyond immediate neighbors are negligible.

Table 5 describes the standard deviations of the estimated regression coefficients (what

Aronow et al. (2015) calls the true standard errors) and the means of the estimated standard

errors for each variance estimator. The round brackets indicate the biases of each estimate

relative to the true standard error in percentage (%). For instance, the Eicker-Huber-White

variance estimator and the dyadic-robust variance estimator, when applied to Specification

1 with ν = 3, underestimate the true standard error by 21.45% and 14.14%, respectively.

C.4 S = 2 and γ = 0.8 with Higher Density Parameters

This subsection examines how an increase in the number of connected dyads affects the

performance of the dyadic-robust variance estimator. Table 6 reports the results for the case

of S = 2 with γ = 0.8, i.e., the same combination as the main text (Table 1), but for denser

networks which set ν = 4, 5 for Specification 1 and λ = 4, 5 for Specification 2. We find

that, while our estimator performs well (with coverage close to the nominal level), the bias

in the Eicker-Huber-White and dyadic-robust estimators variance estimators are present and

increase as the network becomes denser.
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Figure 2: Boxplots of Standard Errors for Specifications 1 and 2 (S = 2, γ = 0.8)

Note: This figure shows boxplots describing the estimated standard errors and the empirical standard errors

for various combinations of parameters under Specification 1 (Barabási-Albert networks) and Specification 2

(Erdös-Renyi networks). The horizontal axis shows the number of nodes and the vertical axis represents the

the standard error of the coefficient. The shaded boxes represent the 25th, 50th and 75th percentiles of esti-

mated standard errors with the whiskers indicating the most extreme values that are not considered as outliers.

The light-gray box illustrates the Eicker-Huber-White standard error, the medium-gray one the dyadic-robust

standard error and the dark-gray one the network-robust standard error. The diamonds stand for the empirical

standard error, defined as the standard deviation of the estimates of the regression coefficient. The estimator

is considered as not covering the true standard error when the diamond is outside of the shaded area.
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Table 5: Means and Biases of the Standard Errors: N = 5000, S = 2, γ = 0.8.

Specification 1 Specification 2

ν = 1 ν = 2 ν = 3 λ = 1 λ = 2 λ = 3

True 0.0430 0.0518 0.0570 0.0285 0.0283 0.0302

Eicker-Huber-White 0.0337 0.0404 0.0448 0.0234 0.0229 0.0239
(Bias %) (-21.61) (-21.92) (-21.45) (-17.91) (-19.14) (-20.68)

Dyadic-robust 0.0403 0.0453 0.0490 0.0270 0.0266 0.0275
(Bias %) (-6.19) (-12.54) (-14.14) (-5.01) (-6.12) (-8.93)

Network-robust 0.0425 0.0509 0.0565 0.0280 0.0285 0.0302
(Bias %) (-1.09) (-1.78) (-0.92) (-1.70) (0.58) (0.09)

Note: This table shows the standard deviations of the estimated regression coefficients
(the true standard error) and the means of the estimated standard errors for each vari-
ance estimator with the round brackets indicating the biases relative to the true stan-
dard error in percentage (%). To facilitate the comparison, the biases are rounded off
to the second decimal places.

C.5 S = 2 and γ = 0.2

Table 7 presents the empirical coverage probability and average length of confidence intervals

for β at 5% nominal size when S = 2 and γ = 0.2. The associated boxplots are given in Figure

3. Since the magnitude of spillovers is now much smaller than the case of γ = 0.8, there

are only minor differences in performance between the network-robust variance estimator

and the other two existing methods (namely, the Eicker-Huber-White and dyadic-robust

variance estimators). In terms of convergence, the comparable performance of the dyadic-

robust-variance estimator is evident in Figure 3.

Comparing Table 7 to Table 1 highlights the impact of spillovers on the variance estima-

tors. When the spillovers are substantially weak (e.g., γ = 0.2), the dyadic-robust variance

estimator can serve as a good substitute for the network-robust one. In the case of relatively

high spillovers (e.g., γ = 0.8), on the other hand, there are evident biases (around 4 percent-

age points for Specification 1 and 3 percentage points for Specification 2 when N = 5000).

Based on this comparison, we suggest that the network-robust variance estimator be used

when the correlations are expected to be relatively strong.
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Table 6: The empirical coverage probability and average length of confidence intervals for β
at 95% nominal level: S = 2, γ = 0.8, higher denseness parameters.

Specification 1 Specification 2

N ν = 4 ν = 5 λ = 4 λ = 5

Coverage Probability
Eicker-Huber-White 500 0.8758 0.8688 0.8744 0.8706

1000 0.8752 0.8688 0.8694 0.8784
5000 0.8658 0.8808 0.8694 0.8750

Dyadic-robust 500 0.8912 0.8808 0.9142 0.9058
1000 0.8936 0.8852 0.9124 0.9160
5000 0.8940 0.9020 0.9152 0.9176

Network-robust 500 0.9084 0.8928 0.9394 0.9368
1000 0.9246 0.9190 0.9424 0.9494
5000 0.9404 0.9436 0.9450 0.9512

Average Length of the C.I.
Eicker-Huber-White 500 0.5282 0.5577 0.3088 0.3230

1000 0.3964 0.4155 0.2183 0.2323
5000 0.1944 0.2132 0.0992 0.1045

Dyadic-robust 500 0.5580 0.5841 0.3471 0.3601
1000 0.4211 0.4380 0.2465 0.2595
5000 0.2085 0.2254 0.1124 0.1172

Network-robust 500 0.6099 0.6428 0.3825 0.4022
1000 0.4751 0.4966 0.2743 0.2927
5000 0.2449 0.2660 0.1259 0.1331

Note: The upper-half of the table displays the empirical coverage probability

of the asymptotic confidence interval for β, and the lower-half showcases the

average length of the estimated confidence intervals. As the sample size (N) in-

creases, the empirical coverage probability approaches 0.95, the nominal level.

This convergence is accompanied by the shrinking average length of confidence

intervals.
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Table 7: The empirical coverage probability and average length of confidence intervals for β
at 95% nominal level: S = 2, γ = 0.2.

Specification 1 Specification 2

N ν = 1 ν = 2 ν = 3 λ = 1 λ = 2 λ = 3

Coverage Probability
Eicker-Huber-White 500 0.9286 0.9186 0.9108 0.9434 0.9292 0.9308

1000 0.9320 0.9158 0.9148 0.9338 0.9322 0.9322
5000 0.9200 0.9110 0.9124 0.9434 0.9382 0.9308

Dyadic-robust 500 0.9342 0.9350 0.9336 0.9454 0.9368 0.9422
1000 0.9454 0.9376 0.9458 0.9398 0.9422 0.9486
5000 0.9446 0.9448 0.9432 0.9486 0.9490 0.9472

Network-robust 500 0.9284 0.9246 0.9162 0.9428 0.9360 0.9384
1000 0.9414 0.9294 0.9370 0.9392 0.9410 0.9456
5000 0.9454 0.9476 0.9418 0.9494 0.9492 0.9470

Average Length of the Confidence Intervals
Eicker-Huber-White 500 0.1578 0.1214 0.1092 0.1860 0.1360 0.1141

1000 0.1088 0.0846 0.0743 0.1290 0.0955 0.0799
5000 0.0486 0.0388 0.0346 0.0579 0.0423 0.0357

Dyadic-robust 500 0.1648 0.1316 0.1213 0.1890 0.1410 0.1205
1000 0.1158 0.0931 0.0833 0.1319 0.0994 0.0848
5000 0.0532 0.0439 0.0398 0.0594 0.0443 0.0381

Network-robust 500 0.1637 0.1291 0.1174 0.1885 0.1404 0.1196
1000 0.1154 0.0922 0.0825 0.1318 0.0993 0.0848
5000 0.0533 0.0440 0.0401 0.0594 0.0444 0.0382

Note: The upper-half of the table displays the empirical coverage probability of the asymptotic

confidence interval for β, and the lower-half showcases the average length of the estimated confi-

dence intervals. One computational issue that plagues the Monte Carlo simulation is the potential

lack of positive-semi-definiteness of the estimated variance-covariance matrix. In general, this prob-

lem prevails only when the sample size (N) is small. In our case, when N = 500, four variance

estimates out of five thousands take negative values. We deal with this issue by first applying the

eigenvalue decomposition to the estimated variance-covariance matrix and then augmenting the di-

agonal matrix of eigenvalues by a small constant, followed by pre- and post-multiplications by the

matrix of eigenvectors to obtain the updated estimate for the variance-covariance matrix. As the

sample size (N) increases, the empirical coverage probability approaches 0.95, the nominal level.

This convergence is accompanied by the shrinking average length of confidence intervals.
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Figure 3: Boxplots of Standard Errors for Specifications 1 and 2 (S = 2, γ = 0.2)

Note: This figure shows boxplots describing the estimated standard errors and the empirical standard errors

for various combinations of parameters under Specification 1 (Barabási-Albert networks) and Specification 2

(Erdös-Renyi networks). The horizontal axis shows the number of nodes and the vertical axis represents the

the standard error of the coefficient. The shaded boxes represent the 25th, 50th and 75th percentiles of esti-

mated standard errors with the whiskers indicating the most extreme values that are not considered as outliers.

The light-gray box illustrates the Eicker-Huber-White standard error, the medium-gray one the dyadic-robust

standard error and the dark-gray one the network-robust standard error. The diamonds stand for the empiri-

cal standard error, defined as the standard deviation of the estimates of the regression coefficient. This figure

showcases the boxplots for the case when γ = 0.2.
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C.6 S = 1

For comparison purposes, this subsection explores the results for S = 1. If S = 1, there are

no higher-order correlations beyond direct (adjacent) neighbors. Then, the network-robust

variance estimator ought to coincide with the dyadic-robust variance estimator by definition,

for any γ, as pointed out in Example 2.1. This is verified below for the case of γ = 0.8. Table

8 shows the simulation results.

Table 8: The empirical coverage probability and average length of confidence intervals for β
at 95% nominal level: S = 1, γ = 0.8.

Specification 1 Specification 2

N ν = 1 ν = 2 ν = 3 λ = 1 λ = 2 λ = 3

Coverage Probability
Eicker-Huber-White 500 0.8804 0.8676 0.8734 0.8906 0.8768 0.8692

1000 0.8678 0.8810 0.8710 0.8984 0.8864 0.8856
5000 0.8752 0.8652 0.8742 0.8996 0.8910 0.8778

Dyadic-robust 500 0.9292 0.9304 0.9384 0.9366 0.9416 0.9368
1000 0.9364 0.9426 0.9432 0.9428 0.9454 0.9484
5000 0.9474 0.9414 0.9498 0.9452 0.9518 0.9506

Network-robust 500 0.9292 0.9304 0.9384 0.9366 0.9416 0.9368
1000 0.9364 0.9426 0.9432 0.9428 0.9454 0.9484
5000 0.9474 0.9414 0.9498 0.9452 0.9518 0.9506

Average Length of the Confidence Intervals
Eicker-Huber-White 500 0.3282 0.2901 0.2881 0.2664 0.2377 0.2235

1000 0.2321 0.2088 0.1964 0.1887 0.1665 0.1564
5000 0.1131 0.1042 0.0980 0.0844 0.0742 0.0704

Dyadic-robust 500 0.3934 0.3591 0.3603 0.3104 0.2888 0.2776
1000 0.2853 0.2625 0.2500 0.2227 0.2037 0.1950
5000 0.1428 0.1330 0.1259 0.0998 0.0913 0.0882

Network-robust 500 0.3934 0.3591 0.3603 0.3104 0.2888 0.2776
1000 0.2853 0.2625 0.2500 0.2227 0.2037 0.1950
5000 0.1428 0.1330 0.1259 0.0998 0.0913 0.0882

Note: The upper-half of the table displays the empirical coverage probability of the asymptotic

confidence interval for β, and the lower-half showcases the average length of the estimated confi-

dence intervals. As the sample size (N) increases, the empirical coverage probability approaches

0.95, the nominal level. This convergence is accompanied by the shrinking average length of confi-

dence intervals.

60



C.7 S =∞ with the Parzen kernel

In this subsection, we investigate the consequences of adaptively choosing the value of the

lag-truncation parameter following the rule outlined in the main text. To this end, we set

S =∞ (i.e., spillovers may propagate to all neighbors), with the magnitude of the spillovers

controlled by γ = 0.8 (the same as in the main text). In this environment, the spillovers

are never truncated while decaying as they propagate farther. With regards to estimation,

we consider the Parzen kernel, letting the lag-truncation parameter be chosen on the basis

of Kojevnikov et al. (2021). The simulation results are given in Table 9, while the selected

lag-truncation parameters are shown in Table 10.

The empirical coverage probability based on the network-robust variance estimator ap-

proaches to 95%, as expected. On the other hand, both the Eicker-Huber-White and dyadic-

robust variance estimator understate the targeted nominal level, as claimed in the main text.

It should be noted that these biases can become larger when the decay rate is slower. We

focus on Specification 2, as it likely satisfies the assumptions above under S =∞. After all,

with S =∞ and a very dense network, Assumption 3.4 is violated.
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Table 9: The empirical coverage probability and average length of confidence intervals for β
at 95% nominal level, Specification 2: S =∞, γ = 0.8, the Parzen kernel.

N λ = 1 λ = 2 λ = 3

Coverage Probability
Eicker-Huber-White 500 0.8884 0.8768 0.8718

1000 0.8892 0.8832 0.8806
5000 0.8966 0.8820 0.8806

Dyadic-robust 500 0.9282 0.9150 0.8964
1000 0.9300 0.9214 0.9126
5000 0.9384 0.9272 0.9118

Network-robust 500 0.9366 0.9302 0.9180
1000 0.9382 0.9386 0.9362
5000 0.9480 0.9510 0.9462

Average Length of C.I.
Eicker-Huber-White 500 0.2890 0.3085 0.3658

1000 0.2103 0.2241 0.2570
5000 0.0933 0.0994 0.1188

Dyadic-robust 500 0.3293 0.3483 0.3966
1000 0.2405 0.2526 0.2809
5000 0.1075 0.1127 0.1300

Network-robust 500 0.3387 0.3705 0.4233
1000 0.2502 0.2729 0.3070
5000 0.1120 0.1233 0.1457

Note: The upper-half of the table displays the empirical cover-

age probability of the asymptotic confidence interval for β, and

the lower-half showcases the average length of the estimated con-

fidence intervals. As the sample size (N) increases, the empirical

coverage probability approaches 0.95, the nominal level. This con-

vergence is accompanied by the shrinking average length of confi-

dence intervals.

Table 10: The lag-truncation parameters for Table 9 based on the Kojevnikov et al.’s (2021)
rule.

N λ = 1 λ = 2 λ = 3

500 224.3186 17.5262 12.0174
1000 254.5841 20.0388 13.4822
5000 320.3268 24.1851 16.0915

Note: This table displays the lag-truncation parameters bM for the simulations in Table 9, selected
using the rule: bM = 2 log(M)/ log(max(average degree, 1.05)), with M denoting the number of active
dyads.
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D Additional Information for the Empirical Illustra-

tion

D.1 Seating Arrangement at the European Parliament

Figure 4 exhibits an example of the seating arrangement at the European Parliament, and

describes how we construct an adjacency relationship among MEPs within their EPG groups.

D.2 Summary Statistics of the Seating Arrangement

Table 11 lists the summary statistics of the seating arrangement (for Strasbourg at term 7)

when viewed as a network over pairs of MEPs. Its summary statistics are consistent with

those from the Erdös-Renyi random network with λ = 1 to λ = 3 (see Table 4). This suggests

that our empirical illustration should perform well with the Parzen kernel and bandwidth

choice proposed in Kojevnikov et al. (2021).

Table 11: Summary Statistics of The Seating Arrangement: Strasbourg, Term 7

dact dmax dave edirect eindirect

602 2 1.7076 514 3136

See Table 4 for the definition of the first three indicators. The last two represent the number of adjacent
and connected dyads, respectively.

D.3 Data Construction

Data construction for our empirical exercise in Section 5 proceeds in multiple steps:

Step 1: Our subsample consists of the location of interest (i.e., Strasbourg) for the period

of interest (i.e., Term 7). We select a further subset of the extracted data by seating

arrangement (i.e., we focus on Pattern 1 for the present analysis - see Table 12).

Step 2: Since our analysis is concerned with voting concordance, we follow the original

authors in dropping entries with missing data or “abstain” in the variable “vote.”30

Step 3: The resulting data still contains individuals belonging to “Identity, Tradition and

Sovereignty (ITS),” one of the European Political Groups that dissolved in November

7, during the sixth term. We drop such MEPs from our analysis.

30This amounts to assuming that those observations are missing completely at random (MCAR).
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Figure 4: Seating Plan at the European Parliament: Strasbourg, September 14, 2009

ALDE PPE

Row 10 · · · ...
...

...
...

...
... · · ·

Row 9 · · · Seat 36: Seat 37: Seat 38: Seat 39: Seat 40: Seat 41: · · ·
ALFANO ALVARO CAVADA COELHO COLLINO COMI

Row 8 · · · Seat 32: Seat 33: Seat 34: Seat 35: Seat 36: · · ·
OJULAND OVIIR BACH BALDASSARRE BALZ

Row 7 · · · ...
...

...
...

...
... · · ·

Note: The upper panel illustrates a zoomed-out view of a seating plan for the European parliament in Stras-

bourg on September 14, 2009. gray circles are individual MEPs, while black circles embody members of conseil

and commission. The associated party (EPG) is denoted at the top. The lower panel provides a zoomed-in view

elaborating on the part of the upper panel marked by the dotted trapezoid shaded in gray. Alafano and Alvaro

are treated as adjacent because they are sitting next to each other and belong to the same political party, i.e.,

ALE. Similarly, Ojuland and Oviir are considered to be adjacent. On the other hand, following the original

authors, Alvaro and Cavada are not regarded as adjacent though they are seated together because they belong

to different political parties, i.e., ALE and PPE, respectively. In terms of dyad-level adjacency, Cavada-Coelho

and Coelho-Collino are adjacent dyads as they share Coelho, whereas Cavada-Coelho and Collino-Comi are not

adjacent, but they are still connected as they have indirect paths to one another along the dyadic network.
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Step 4: The selected data is used to form the dyadic data registering the pair-of-MEPs-

specific information. When pairing two MEPs, we follow Harmon et al. (2019) in

focusing on those pairs of MEPs, both of whom are

(i) in the same EPG;

(ii) from an alphabetically-seated EPG; and

(iii) non-leaders at the time of voting.

Our dyadic data consists of two types of variables: binary variables and numerical

variables. The dyad-level binary (i.e., indicator) variables are defined to be one if the

individual-level binary variables are the same, and zero otherwise. The dyadic-specific

numerical variables in our analysis are the differences between the individual-level

numerical variables, such as age and tenure. When calculating the differences in ages

and tenures, we take the absolute values as we do not consider directional dyads, and

we then rescale them into ten-year units. See the note below Table 2 for details.

Table 12: Patterns of Seating Arrangements: Strasbourg, Term 7

Pattern Date Number of Proposals

1 7/14/2009 ∼ 7/16/2009 116
2 8/18/2009 ∼ 8/21/2009 72
3 9/23/2009 ∼ 9/25/2009 114
4 10/13/2009 ∼ 10/16/2009 40
5 11/19/2009 ∼ 12/11/2009 94
6 1/5/2010 ∼ 1/8/2010 79
7 3/17/2010 ∼ 3/19/2010 45
8 4/14/2010 ∼ 4/16/2010 120
9 5/5/2010 ∼ 5/7/2010 79
10 7/7/2010 ∼ 7/9/2010 34
11 7/21/2010 ∼ 7/22/2010 50
12 8/18/2010 ∼ 8/20/2010 118

Note: This table presents patterns of seating arrangements
with the corresponding dates and the number of total obser-
vations for each pattern. Since voting may be taken place for
multiple proposals within the same day, the total number pro-
posals tends to be higher than that of days in a single pattern.
For example, the first line indicates that 116 proposals were
discussed and votes were cast over the three days (from the
14th of July, 2009 to the 16th of July, 2009).
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D.4 Full Results

Table 13 reports the detailed result of the empirical illustration. As explained in Section 5.3,

Panel A reports the estimates of the parameter of interest, while Panel B lists the standard

errors based on the different variance estimators. In particular, we carry out the estimation

using both the network-robust variance estimator with the mean-shifted rectangular kernel,

and the one with the Parzen kernel, generating the same estimates. Panel C collects the

parameter estimates for other covariates accompanied by the standard errors obtained from

our proposed variance estimator from equation (10), and indicates the presence or absence

of day-level fixed effects.

Table 13: Spillovers in Legislative Voting – Main Analysis

Specification (I) Specification (II) Specification (III)

Panel A: Parameter estimates for Seat neighbors
Seat neighbors 0.0069 0.0060 0.0060

Panel B: Standard errors for Seat neighbors
Eicker-Huber-White 0.0031 0.0030 0.0030
Dyadic-robust 0.0075 0.0082 0.0087
Network-robust (with the rectangular kernel) 0.0095 0.0104 0.0112
Network-robust (with the Parzen kernel) 0.0095 0.0104 0.0112

Panel C: Parameter estimates for other covariates
Same country 0.0561 0.0562

(0.0008) (0.0008)
Same quality education 0.0030 0.0028

(0.0007) (0.0007)
Same freshman status -0.0070 -0.0070

(0.0008) (0.0008)
Same gender 0.0004 0.0004

(0.0007) (0.0006)
Age difference 0.0007 0.0004

(0.0004) (0.0004)
Tenure difference -0.0149 -0.0149

(0.0006) (0.0006)

Day-level FE No No Yes

Note: Panel A displays the parameter estimates for the three different specifications; Panel B

shows the standard errors for the regression coefficient of SeatNeighbors using different variance

estimators; and Panel C collects the parameter estimates for other covariates accompanied by the

standard errors obtained from our proposed variance estimator from equation (10), and indicates

the presence or absence of day-level fixed effects. Adjacency of MEPs is defined at the level of

a row-by-EP-by-EPG. (See the note below Figure 4.) Independent variables are as follows: Seat

neighbors is an indicator variable denoting whether both MEPs sit together; Same country repre-

sents an indicator for whether both MEPs are from the same country; Same quality education is

an indicator showing whether both MEPs have the same quality of education background, mea-

sured by if both have the degree from top 500 universities; Same freshman status encodes whether

both MEPs are freshman or not; Age difference is the difference in the MEPs’ ages; and Tenure

difference measures the difference in the MEPs’ tenures.
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