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Abstract

This paper studies the economic impacts of industrial policies — policies that are purposefully targeted

at particular industries — when industries are linked through production networks and firms in each

industry engage in strategic interactions. The key mechanism of my model is that in response to a pol-

icy reform, the firms’ markups change due to not only adjustments of their own actions but also those

of competitors’ actions (strategic complementarities), and that both of these changes are compounded

by the production network. To identify the policy effect in this setup, I develop a new procedure that

first deconstructs it into firm-level variables — firm-level sufficient statistics — as well as sector-level

variables, and then identifies these building blocks before finally reconstructing the policy parameter

of interest. Using my framework, I examine the impact of one part of the U.S. CHIPS and Science

Act of 2022 on GDP. My estimation predicts that accounting for firms’ strategic interactions nearly

doubles the magnitude of the policy effect, highlighting the policy relevance of strategic interactions

in the presence of a production network.
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1 Introduction

Over the past few decades, industrial policies — policies that are purposefully targeted at particular

industries — have been at the forefront of economic policy debates in a range of contexts.1 In recent

years, U.S. tariffs, primarily on imports from China, were raised by about 14 percentage points to an

average of almost 16.6%.2 In addition, the CHIPS and Science Act of 2022 aims to make nearly $53

billion of investment in the semiconductor industry.3 Of great importance for policymakers are ex ante

evaluations of the impacts of these policies on macroeconomic outcomes such as GDP.

Despite the rich stockpile of empirical treatment-effect estimates on industrial policies targeted at

certain sectors, they cannot generally provide an answer to macroeconomic policy questions because

of agents’ interactions in two dimensions.4 The first is the growing recognition in the literature that

strategic interactions between heterogeneous firms are the key to replicating a number of salient empirical

regularities — for instance, an incomplete pass-through of a price shock (Atkeson and Burstein 2008)

and market power (De Loecker et al. 2020, 2021). Second, the understanding that production processes

interact through production networks (e.g., Horvath 1998, 2000) has sparked extensive research on their

implications — for instance, aggregate fluctuations (Acemoglu et al. 2012), and misallocation (Baqaee

and Farhi 2020). However, even in the realm of structural modeling, no existing research studying the

impacts of industrial policies has included both of these two features at once, impeding a precise ex ante

evaluation of an industrial policy.

In this paper, I develop a structural framework for policy evaluation, accounting for firms’ oligopolistic

competition and production networks between industries. I define the policy effect as the change in GDP

due to an industrial policy. The key mechanism of my model is that the production network compounds

not only the firms’ markup responses with respect to their own choices but also those with respect to com-

petitors’ (strategic complementarities), with the latter being absent in monopolistic models. Moreover,

in strategic interaction models, individual firms have the potential to exert a nonnegligible influence over

sectoral outcomes; thus, the policy parameter cannot be characterized by aggregate variables alone. This

invalidates the aggregate sufficient statistics approach, a method increasingly used in recent macroeco-

1For a recent review of industrial policies, see Rodrik (2008), Juhász et al. (2023), and Juhász and Steinwender (2023).
2See Fajgelbaum et al. (2020).
3CHIPS stands for Creating Helpful Incentives to Produce Semiconductors (White House 2022). See also White House

(2023) for the details of this act.
4See Lane (2020) and Juhász et al. (2023).
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nomics and international trade literature.5 This paper exploits widely used firm-level data and proposes

a new sequential procedure that identifies the policy effect in terms of individual firm’s responses which

I call firm-level sufficient statistics. This identification approach is constructive, so that a nonparametric

estimator for the policy effect can be obtained by reading the procedure in reverse.6 I then apply my

framework to examine the effect of one part of the U.S. CHIPS and Science Act — corresponding to an

additional subsidy on the semiconductor industry — and compare the estimate based on oligopolistic

competition to that based on monopolistic competition. I find that the former nearly doubles the latter

in magnitude, echoing the empirical relevance of accounting for strategic competition in the presence of

a production network.

My model builds on Liu (2019) to study a general equilibrium multisector model of a production

network by assuming that each sector is populated by a finite number of heterogeneous oligopolistic

firms, thereby firm-level markups being endogenously variable. The government helps firms to purchase

sectoral intermediate goods through an ad-valorem subsidy specific to the purchaser sector. The policy

effect is defined as the change in GDP due to a shift in the level of the sector-specific subsidy (i.e., an

industrial policy). To keep track of the endogenously variable markups, I restrict the sectoral aggregators

to be a demand system that is homothetic with a single aggregator (HSA; Matsuyama and Ushchev 2017).

One benefit of this specification is that firms’ interactions are summarized by the single aggregator.7 Still,

the fact that individual firms are finite in number and thus nonnegligible to the aggregate hampers the

identification of the policy effect by the aggregate sufficient statistics. This paper proposes an alternative

approach that recovers the policy parameter in terms of firm-level variables.

The identification analysis of this paper consists of three layers. In the top layer, the object of

interest is written as a continuous sum of the marginal changes in GDP over the course of a policy

reform. The middle layer further deconstructs each of these marginal changes into the responsiveness of

firm- and sector-level variables to an infinitesimally small policy change. These comparative statics are

then recovered by solving the systems of equations that are derived from the firm’s optimization problems,

taking the firm-level output quantity and price, as well as the elasticities of firm-level production and

inverse demand functions, as given. The bottom layer obtains these conditioning variables — firm-

level sufficient statistics — by leveraging the control function approach of the industrial organization

5See, for example, Arkolakis et al. (2012), Adão et al. (2017), Arkolakis et al. (2019), and Adão et al. (2020) for
applications in the context of macroeconomics. See Chetty (2009) for a general idea of the sufficient statistics approach.

6See Matzkin (2013) for constructive identification and nonparametric estimation.
7A similar insight is exploited by Amiti et al. (2014) and Arkolakis et al. (2019).
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literature. In doing so, I restrict the class of demand and production functions and the way in which

firms’ productivities enter the individual firm’s decision. I show that these assumptions are flexible

enough to accommodate the specifications that are commonly used in the macroeconomics literature.

This identification analysis is constructive, so that a nonparametric estimator for the policy effect can be

obtained by reading these procedures from the bottom to the top. Unlike the calibration-type approach,

my estimation does not require any external information (e.g., parameter estimates from the preceding

research) and thus can be performed in a self-contained fashion.

Finally, I bring my framework to the U.S. firm-level data to evaluate the economic impacts of the

CHIPS and Science Act, which selectively promotes the semiconductor industry and was enacted in 2022.

I consider a hypothetical policy experiment of shifting the ad-valorem subsidy on the computer and

electronic products industry from the 2021 level, which is 14.89%, to an alternative level of 16.00% —

equivalent to $0.56 billion. The estimate accounting for strategic interactions as well as the production

network predicts that GDP falls by $1.34 billion, while the estimate based on monopolistic competition

under the production network suggests a smaller decrease of $0.71 billion. Comparing these two estimates

underlines the policy relevance of correctly accounting for the firm’s strategic interactions.

To better understand the mechanism behind this, I analyze the responsiveness of GDP at the 2021

subsidy with an industry-level breakdown. First, I decompose the responsiveness of sectoral GDP into

four components, namely, i) the changes in output quantities (quantity effects), ii) the associated changes

in output prices (price effects), iii) the changes in input costs due to changes in input quantities (switching

effects), and iv) the changes in input costs due to changes in input prices (wealth effects).8 An important

insight here is that in the networked economy, the output of one sector may be used as an input in all

sectors, so that the output price change in one sector directly affects the input price of all sectors. My

estimation suggests that for many sectors in oligopolistic competition, even if firms produce more of their

products, input prices do not decrease as much as output prices do, leaving them with a higher input

cost. (The negative contributions of the switching effects dominate.)

Second, I further explore the tension between these four forces from the angle of pass-through coef-

ficients. I theoretically show that the sector-level cost-price pass-through can be written in terms of a

weighted sum of firms’ strategic complementarities in the sector, which in turn is compounded along the

production network to give the sector-level policy-cost pass-through coefficient. The former is referred

8In a networked economy, the output of one sector is an input for other sectors; therefore, a change in the output price
in one sector induces changes in the input prices in other sectors.

3



to as the micro complementarity, and the latter is the macro complementarity. My empirical estimates

for these complementarities under oligopolistic competition significantly differ both quantitatively and

qualitatively from those under monopolistic competition. The difference manifests itself in 23 out of 38

industries through the difference in the sign of the marginal change of the sectoral price index, which is

associated with that of firms’ equilibrium responses. This result again points to the empirical relevance

of accounting for firms’ strategic interactions in credibly predicting firms’ responses and hence the policy

effect.

Related literature

This paper contributes to four strands of the literature. First, the framework put forth in this paper

is directly related to the literature on ex ante counterfactual predictions of economic shocks (e.g., trade

costs, productivity), such as Arkolakis et al. (2012), Melitz and Redding (2015), Adão et al. (2017),

Feenstra (2018), and Adão et al. (2020). My framework, though, marks a distinction in two ways.

First, the preceding papers are based on perfectly competitive or monopolistic firms, wheres my paper

explicitly accounts for firms’ strategic interactions. Second, the existing literature is mostly concerned

with directly expressing an aggregate outcome in terms of aggregate variables — aggregate sufficient

statistics. In contrast, my approach first deconstructs the object of interest into firm-level variables —

firm-level sufficient statistics — as well as sector-level variables, and then shows that these variables can

be recovered from the observables before the researcher can reconstruct the same objective outcome.

Second, this paper advances the literature on industrial policies on both theoretical and empirical

grounds. The theory of optimal industrial policy in a multisector environment is explored in Itskhoki

and Moll (2019) and Liu (2019) for exogenous market distortions; in Lashkaripour and Lugovskyy (2023)

for endogenous but constant markups; and in Bartelme et al. (2021) for endogenously varying market

distortions. In my model, the market distortions arise from oligopolistic competition and thus can

endogenously vary according to the strategic interactions.9,10 On the empirical front, my paper intersects

9The model entertained in my papers bears some resemblance to those studied in the literature on welfare loss due to
misallocation in the presence of production networks, such as Jones (2011, 2013), Baqaee and Farhi (2020, 2022), and Bigio
and La’O (2020). These works are principally interested in characterizing welfare loss: they start from an efficient economy
(i.e., they assume away from an initial state of market distortions) and then focus on the consequence of adding a policy as
a source of distortion. My paper admits market distortions in the initial state of the economy, including the policy itself,
and then investigates a welfare-improving policy prescription.

10Grassi (2017) also studies the case of oligopoly, but his focus is on positive analysis under a parametric specification of
production and demand functions. My paper is concerned with evaluating the policy effects with a minimal set of parametric
assumptions.
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with the treatment effect literature. Among many others, Criscuolo et al. (2019) discuss the “reduced-

form” causal effects of an industrial policy.11 The causal interpretation of their policy parameter, however,

is limited to those units that have experienced (exogenous) changes in the eligibility of receiving the

policy. From the perspective of a policymaker who considers the well-being of a society as a whole, such

a locally tailored notion of “causal effect” might not be of central interest. In the spirit of the policy

relevant treatment effects (Heckman and Vytlacil 2001, 2005, 2007), this paper studies an alternative

treatment effect parameter that is both economically interesting and causal in the sense of Marshall

(1890). In a similar vein, Rotemberg (2019) investigates the aggregate effects taking into account the

general equilibrium effects, and Sraer and Thesmar (2019) derive formulas that are able to counterfactually

expand firm-level treatment effects to the aggregate level. Their methodologies are, however, essentially

ex post, whereas my framework can be used for ex ante policy evaluations.

Third, this paper contributes to the literature documenting the empirical relevance of endogenous

firms’ markups, such as Atkeson and Burstein (2008), Amiti et al. (2014), Edmond et al. (2015), Arko-

lakis et al. (2019), Gaubert and Itskhoki (2020), and De Loecker et al. (2021). I connect this line of

research to the literature on sectoral comovements of prices and quantities (e.g., Basu 1995; Huang and

Liu 2004; Huang et al. 2004; Huang 2006; Nakamura and Steinsson 2010; La’O and Tahbaz-Salehi 2022;

Rubbo 2023) by introducing production networks across sectors. Specifically, I show that the sectoral

comovements are traced out by the combination of the within-sector interactions summarizing firms’

strategic complementarities (what I refer to as micro complementarities) and the between-sector inter-

actions compounding the micro complementarities along the production network (what I call macro

complementarities).12

Lastly, outside the domain of the macroeconomics literature, my method is tightly linked to the

industrial organization literature on the identification of firms’ production functions. In particular, the

control function approach (e.g., Olley and Pakes 1996; Levinsohn and Petrin 2003) has customarily

assumed perfect competition (e.g., Ackerberg et al. 2015; Gandhi et al. 2019) or monopolistic competition

(e.g., Kasahara and Sugita 2020). My paper extends their method to strategic interactions by adapting

the notion of sufficient statistics for competitors’ decisions and productivities.13

11A rapidly expanding literature has deployed natural or quasi-experiments to study the causal effects of industrial
policies. For example, Juhász (2018) and Lane (2021) exploit, respectively, the Napoleonic blockade against Britain afforded
to French cotton spinners and President Park’s assassination to define their causal effects. For a more thorough review, see
Lane (2020) and Juhász et al. (2023).

12These terminologies draw from Klenow and Willis (2016) and Alvarez et al. (2023).
13Doraszelski and Jaumandreu (2019), Brand (2020), and Bond et al. (2021) draw attention to the risk of simply applying
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2 Overview

In this section, I provide an overview of this paper using a simple input-output accounting framework and

a duopoly model.14 This section serves two purposes. First, it illustrates the implications of featuring both

a production network and oligopolistic competition in policy analysis and contrasts it to the cases without

either of these mechanisms. To this end, I first consider the standard input-output accounting framework

with sector-level markups15 and then provide a microfoundation to study the firm-level endogenous

markup adjustment. Second, this section explains the identification challenge in this environment and

briefly sketches the approach put forth in this paper.

2.1 Setup

Consider an economy consisting of two sectors, indexed by i ∈ {1, 2}. Each sector’s sales (measured in

the appropriate monetary unit) are denoted by xi. Assume that for each industry i, the sector’s sales (xi)

are different from the cost (x̃i) by the rate of µi (i.e., xi = µix̃i). I consider the case of µi > 1, in which

µi can be interpreted as a sector-level markup (a microfoundation is provided in Section 2.3). Let the

expenditure for the final consumption of sector i’s product be denoted by yi. Letting the share of sector

j’s good in sector i’s cost being represented by ωi,j for i, j ∈ {1, 2}, I use an array Ω := [ωi,j ]i,j∈{1,2} to

keep track of the input-output structure (Table 1).

Let X and Y be vectors stacking xi’s and yi’s, respectively (i.e., X := [x1 x2]′ and Y := [y1 y2]′), and

let M be a 2× 2 diagonal matrix with the typical diagonal element being the sectoral markup and zero

otherwise. It is assumed that the only source of the value added, denoted by V A, is profits:16

V A = (I −M−1)X, (1)

where I is an identity matrix.

The (nominal) gross domestic product is given by the total value added (i.e., GDP = (V A)′ι), where

ι is a 2× 1 vector of ones. Let τ1 denote a policy specific to sector 1,17 and suppose that a policymaker

the standard control function approach to the case of oligopolistic competition, but they do not provide a methodology to
deal with the strategic interactions in recovering the firm’s production function.

14The full description is relegated to Appendix A.
15This section considers a single-country, closed-economy version of Timmer et al. (2015).
16I abstract away from labor in this section, as the message does not change. The formal model in Section 3 explicitly

includes labor as a source of value added.
17As far as the discussion of this section is concerned, the policy tool τ1 can be left unspecified, but could represent a

variety of policies, such as sales tax and input subsidies.
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Table 1: Input-Output Table

Seller
Purchaser

Sector 1 Sector 2 Final Consumption Total Sales

Sector 1 ω1,1x̃1 ω2,1x̃2 y1 x1

Sector 2 ω1,2x̃1 ω2,2x̃2 y2 x2

Total Cost x̃1 x̃2

Value Added (V A) (1− 1
µ1

)x1 (1− 1
µ2

)x2

Note: This figure represents an input-output table for a two-sector economy with market distortions.

hopes to learn the change in GDP as a result of changing the policy from the current level τ0
1 to an

alternative level τ1
1 , which is denoted by ∆GDP (τ0

1 , τ
1
1 ). Observe that the object of policy interest can

be decomposed as

∆GDP (τ0
1 , τ

1
1 ) =

∫ τ1
1

τ0
1

(
dV A

dτ1

)′
ι dτ1, (2)

where ι is a 2× 1 vector of ones.18

Next, I show how the difference in the market structure, in conjunction with the production network,

lends itself to being a difference in the policy parameter ∆GDP (τ0
1 , τ

1
1 ). To this end, I introduce two

notions: macro and micro complementarities.

2.2 Macro Complementarities

Totally differentiating (1) yields

dV A

dτ1
= −dM

−1

dτ1
X︸ ︷︷ ︸

direct effect of the changes in markups

+ (I −M−1)
dX

dτ1
,︸ ︷︷ ︸

indirect effect of the changes in markups

(3)

where dM−1

dτ1
= −M−1 dM

dτ1
M−1 and dX

dτ1
=
∑∞

n=1

∑n−1
l=0 (ΩM−1)l+1 dM

dτ1
M−1(ΩM−1)n−l−1Y+(I−ΩM−1)−1 dY

dτ1
,

with dM
dτ1

= diag([dµ1

dτ1
dµ2

dτ1
]).19 In (3), the first term indicates the direct effects of the changes in markups,

and the second term gives the impacts of the changes in markups that come through changes in sales. No-

tice that the marginal changes in sectors’ sales dX
dτ1

are proportional to the final consumption augmented

by the elasticities of markups with the ratio assigned to the sector’s location on the production network.20

18For an arbitrary vector U = [u1 u2], I write dU
dτ1

:= [ du1
dτ1

du2
dτ1

]. It is assumed that V A is continuously differentiable in τ1.
19For an arbitrary vector U , the operator diag(U) gives a diagonal matrix whose typical diagonal element is an element

of U .
20Specifically, the premultiplying term (ΩM−1)l+1 captures the sector’s intermediate sales to all industries used as inter-

mediate inputs in the (l+1)th round of the production process (upstreamness), while the postmultiplying term (ΩM−1)n−l−1
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Moreover, this term traces out the comovements of sectoral sales dxi and dxj with i 6= j ∈ {1, 2}, which

I call the macro complementarities.

To delve deeper into the macro complementarities, the next subsection lays out a microfoundation of

the responses of the sectoral markups dM
dτ1

through the lens of a duopoly model.21

2.3 Micro Complementarities

I employ a variant of Melitz and Ottaviano (2008). Suppose that each industry i is populated by two firms

k ∈ {1, 2} (i.e., a duopoly), each producing a single differentiated product under a constant marginal

cost mcik. The firms engage in a Cournot competition of complete information. Firms’ products are

aggregated into a single homogeneous sectoral good Qi according to a quadratic production function:

Qi = qi0 + a(qi1 + qi2)− b

2
(q2
i1 + q2

i2)− c

2
(qi1 + qi2)2, (4)

where qi0 is an outside good, qik is meant to be the demand of firm k’s product for k ∈ {1, 2}, and a,

b, and c are demand parameters.22 Assuming positive demand for each product, the inverse demand

function faced by firm k ∈ {1, 2} is given by pik = a− bqik − c(qi1 + qi2).

I define markup as the ratio of price to marginal cost. That is, a firm-level markup is given by

µik := pik
mcik

and the sector-level markup µi := Pi
mci1+mci2+1 , where Pi = 1

2(pi1 + pi2) is the industry’s price

index. Total differentiation yields

dµi
dτ1

= κi1
∂µi1(·)
∂qi1

dqi1
dτ1

+ κi2
∂µi2(·)
∂qi2

dqi2
dτ1︸ ︷︷ ︸

change in markups with respect to own choices

+ κi1
∂µi1(·)
∂qi2

dqi2
dτ1

+ κi2
∂µi2(·)
∂qi1

dqi1
dτ1

,︸ ︷︷ ︸
change in markups with respect to competitors’ choices

(5)

where µik(·) is firm k’s markup function and κik = mcik
mci1+mci2+1 for each k ∈ {1, 2}. The first two terms of

(5) account for the contributions from the firms’ markup elasticities with respect to their own choices. The

third and fourth terms capture the effects of the firms’ markup elasticities with respect to competitors’

choices that come through the strategic interaction (i.e., the strategic complementarity). That is, dµi
dτ1

involves a weighted average of (functions of) strategic complementarities; I refer to this weighted average

corresponds to the sector’s intermediate purchases from all industries used as intermediate inputs in the (n− l− 1)th round
of the production process (downstreamness). See Antràs et al. (2012) and Antràs and Chor (2019).

21Grassi and Sauvagnat (2019) consider a setup similar to (38) with the assumption that the markups are exogenous.
22The outside good xi0 is used as a numeriare good and produced in a perfectly competitive fashion under constant

returns to scale at unit cost. Labor is assumed to be the sole factor of production. The demand parameters a, b, and c are
all assumed to be positive. See Melitz and Ottaviano (2008) for the details.
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as the micro complementarity. Stacking (5), I can write as

dM

dτ1
= M̄ + M̃, (6)

where M̄ and M̃ are diagonal matrices with the (i, i) entry being equal to the first two terms and the other

two terms of (5), respectively. It is worth stressing that when the market is monopolistically competitive,

the term M̃ is dropped.

To summarize, firms’ markup elasticities with respect to their own and competitors’ choices (strategic

complementarities) add up to sectors’ micro complementarities as given in (6), which in turn accrue

through the production network, yielding sectors’ macro complementarities according to (3).

Lastly, substituting (3) and (6) into (2) decomposes the policy effect into three components:

∆GDP (τ0
1 , τ

1
1 )

=

∫ τ1
1

τ0
1

{
(I −M−1)(I − ΩM−1)−1 dY

dτ1

}′
ι dτ1︸ ︷︷ ︸

the policy impact due to the change in final consumption

+

∫ τ1
1

τ0
1

[{
M̄M−2

∞∑
n=0

(ΩM−1)n − (I −M−1)

∞∑
n=1

n−1∑
l=0

(ΩM−1)l+1M̄M−1(ΩM−1)n−l−1

}
Y

]′
ι dτ1︸ ︷︷ ︸

the policy impact coming through the changes in firms’ markups due to own choices

+

∫ τ1
1

τ0
1

[{
M̃M−2

∞∑
n=0

(ΩM−1)n − (I −M−1)
∞∑
n=1

n−1∑
l=0

(ΩM−1)l+1M̃M−1(ΩM−1)n−l−1

}
Y

]′
ι dτ1︸ ︷︷ ︸

the policy impact coming through the changes in firms’ markups due to competitors’ choices

. (7)

The first term represents the policy effects stemming from the change in final consumption. The second

and third terms, respectively, capture the change in GDP as a direct consequence of the firms’ own choices

and that induced by the competitors’ choices. When sectors are monopolistically competitive, the third

term in (7) is dropped. In the absence of production networks, (7) holds by replacing Ω with an identity

matrix I. Hence, failure to account for either a production network or oligopolistic competition generates

a prediction different from the one given by (7).

In general, the qualitative and quantitative consequences of embracing strategic interactions are am-

biguous because the sign of the third term in (5) depends on all firms’ strategic complementarities, which

can be either positive or negative. That is, the (integrand of the) third term in (7) may act in a way that

either fortifies or counteracts the (integrand of the) first term.
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2.4 Idea of Identification Strategy

The starting point of my identification analysis is (7) (the top layer). The difficulty arises from the fact

that the integrands cannot simply be written in terms of sectoral aggregates only, as it consists of a

finite number of firms.23 In the example above, there are only two firms in each sector. This means that

each firm is the crucial competitor to the other, so that both firms are not negligible in determining the

sectoral aggregate.

To get a better sense of how this matters, suppose for a moment that the two firms are equally

productive and thus equally competitive. In this case, each firm accounts for half of the sectoral aggregate.

Ignoring the contribution of either of them yields a sectoral outcome that substantially differs from the

true one. Hence, the existing approach that relies on the assumption of infinitesimally small firms cannot

be applied in my framework.

The idea here is to recover the firm-level responses. Observe first that the integrands of (7) are

expressed in terms of the comparative statics, as shown in (5). These comparative statics are pinned

down by the system of equations that result from the underlying firm’s optimization problems, taking the

firm-level quantity and price, and derivatives of firm-level production and demand functions (and thus the

firm’s markup elasticities M̄ and M̃) as given (the middle layer). These firm-level conditioning variables

can be identified by applying the control function approach of the industrial organization literature to the

case of oligopolistic competition (the bottom layer). To do this, though, requires additional assumptions.

Continuing the setup sketched above, this subsection further illustrates the idea of the bottom layer.

Now, I assume that i) the sectoral aggregators take the form of a demand system that is homothetic

with a single aggregator, ii) the firm-level production functions exhibit constant returns to scale with

Hicks-neutral productivity, and iii) competitors’ productivities enter the firm’s decision only through a

single aggregate. The plausibility of these assumptions can immediately be verified as shown below.24

First, it is known that (4) falls into the class of an HSA demand system.25 Second, suppose that

the firm-level production in sector i is given by qik = zikfi(mik,1,mik,2), where fi(·) is constant returns

to scale with zik and mik,j representing firm k’s productivity and input demand for sector j’s good,

23In the case of monopolistic competition, the literature typically assumes that each market is populated by a mass of
infinitesimally small firms. In such a setup, individual firms are negligible relative to the sectoral aggregate. See Gaubert
and Itskhoki (2020).

24In Section 3, I show that these assumptions are flexible enough to encompass the specifications that are commonly used
in the macroeconomics literature.

25See Arkolakis et al. (2019).
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respectively.26 It is assumed that firms first decide the output quantity under a Cournot duopoly, followed

by the decision about the input quantity of sectoral goods. Under this setting, firm k’s marginal cost

can be written as mcik = z−1
ik mci, where mci is a constant common to all firms in sector i.27 The

Cournot-Nash equilibrium quantity is given by q∗ik = Kiz
−1
ik + H̄i, where Ki and H̄i = Hi(zi1, zi2) are

sector-specific constants, with Hi(·) being a sector-specific function of firms’ productivities.28 The latter

can be interpreted as representing the level of market competitiveness. Lastly, the firm’s input decision

is thus constrained by the following production possibility frontier:

zikfi(mik,1,mik,2) = q∗ik = Kiz
−1
ik + H̄i,

from which it follows that there exists a functionMi such that zik =Mi(mik,1,mik,2; H̄i).
29 Accounting

for the firm’s strategic interaction through H̄i, this expression conforms to the control function of the

industrial organization literature, so that the techniques developed in that literature can readily be

applied.

To summarize, the object of interest can be broken down into the comparative statics, which in turn

are recovered by solving the system of equations conditional on firm-level responses. As soon as these

conditioning variables are identified, the policy parameter can be recovered. To do so, this paper imposes

a set of restrictions, but these are sufficiently mild in the sense of accommodating the specifications

commonly used in the literature.

3 Model

A growing body of empirical reduced-form research has studied the causal effects of industrial policies.

However, these estimates may not be informative for ex ante evaluations of the causal impact of an in-

dustrial policy on macroeconomic outcomes for three reasons. First, the literature has found that firms

are engaged in strategic interactions through market competition in each sector and that firms’ produc-

tion processes interact through production networks.30 Second, firms exhibit a multitude of unobserved

26The demand for sectoral goods aligns with the production network Ω.
27The implicit assumptions, both of which are standard in the literature (e.g., Grassi 2017; Kasahara and Sugita 2020),

are that sectoral input goods are variable in the firm’s production and that input markets are perfectly competitive.
28Since the information structure is complete, Hi(zi1, zi2) is a constant and common to all firms.
29The function Mi(·) is not required to be unique. See Appendix 2.4.
30See Section 1.
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heterogeneities.31 Third, industrial policies are local in nature, but macroeconomic outcomes, such as

GDP, are global by characteristics, wherein the general equilibrium effects are in play.32

To circumvent these challenges, this section spells out a general equilibrium closed-economy multi-

sector model of oligopolistic competition among heterogeneous firms under production networks. The

model is akin to Liu (2019), who considers the optimal policy in the presence of a production network

when there are exogenous market distortions. I depart from his setup by replacing the exogenous wedges

with endogenously variable firms’ markups. In my model, the markups can arise from oligopolistic

competition among a finite number of heterogeneous firms and the non-CES specification of the residual

inverse demand functions faced by the firms.33

It is postulated that as a way to neutralize the market distortions induced by the endogenous markups,

the government manipulates sector-specific policy instruments τ := {τi}Ni=1, where τi is understood as

an ad-valorem subsidy on sector i’s purchase of intermediate sectoral goods if it is positive, and a tax

otherwise.34 I restrict my attention to the short-run policy effects abstracting away from the entry and

exit decisions (extensive margins), as postulated in Mayer et al. (2021) and Wang and Werning (2022).35

The model is static and there is no uncertainty. The economy consists of a representative household,

a government, and N production sectors, indexed by i ∈ N := {1, . . . , N}. Each sector i is populated by

a finite number Ni of heterogeneous oligopolistic firms, indexed by k ∈ Ni := {1, . . . , Ni}, each of which

produces a single differentiated good. There is a sectoral aggregator that aggregates the firms’ products

in the same sector into a single intermediate good. Sectoral goods are further combined to produce a final

consumption good. Both the final and sectoral aggregators operate in perfectly competitive markets.

Firm-level production uses labor and sectoral intermediate goods as inputs. The transaction of sectoral

goods by firms shapes the input-output linkages, denoted by Ω := [ωi,j ]i,j∈N with ωi,j being the share of

sector j’s intermediate good in sector i’s expenditure for inputs.36

31See, for example, Helpman et al. (2008).
32For early works investigating the general equilibrium effects in the context of program evaluations, see Heckman et al.

(1998a,b,c).
33Arkolakis et al. (2019) consider a model of variable markups under monopolistic competition with a flexible class of

non-CES demand functions. My paper adds an additional source of endogenous markups, strategic interactions.
34I abstract from other policy measures such as technology adoption, direct price regulation and antitrust law.
35The short-run scope can be rationalized by acknowledging that firms’ entry and exit decisions generally invoke a

considerable amount of cost and time. Technically, accommodating the endogenous choice of entry and exit requires another
layer of the fixed point problem concerning the free-entry condition, which in general is very hard to solve (Wang and Werning
2022). In particular, given that the number of firms in my setup is finite, it is not even possible to consider differentiation
of the free-entry condition. Extending the theory to a long-run analysis is left for future work.

36Analogously, I write ωL := [ωi,L]Ni=1 with ωi,L indicating the labor share in sector i’s cost.
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3.1 Market Distortions and Industrial Policy

Let τ 0 denote the policy regime currently in place. Suppose that the policymaker wishes to learn how

much GDP would increase or decrease by moving to an alternative policy regime τ 1. That is, the

current policy τ 0 might not yet be optimized but rather can be a part of the market distortions, and

the policymaker is looking for a way to improve GDP.37 In particular, the policymaker is interested in

changing only the subsidy on sector n while keeping the subsidies on the other sectors (i.e., an industrial

policy on sector n).38 Thus, the policy parameter is defined as the change in GDP due to a policy reform

from τ0
n to τ1

n, which is denoted by ∆Y (τ0
n, τ

1
n).

To give this policy parameter a causal interpretation, I impose the following assumptions.

Assumption 3.1 (Policy Invariance). Throughout the policy reform from τ 0 to τ 1, (i) the index set

for sectors N, (ii) the index set for firms in each sector Ni, (iii) each sectoral aggregator, (iv) every

firm-level production function in each sector, and (v) the shape of the input-output linkages ωL and Ω do

not change.

Assumption 3.1 (i) is consistent with the focus of this study on ad-valorem subsidies, excluding other

competition interventions. Invariance condition (ii) assumes away from endogenous entry and exit in

response to the policy change, which is implied by the short-run scope of this paper. Conditions (iii)

and (iv) jointly mean that the policy reform does not alter the firms’ operating environments, which in

turn rules out both direct and indirect impacts of the policy reform on firms’ productivities.39 Part (v)

states that the input-output linkages ωL and Ω do not reshape in reaction to the policy reform. This

again accords with the scope of my analysis and also resonates with the existing literature that assumes

the production network to be stable over a period of time (e.g., Baqaee and Farhi 2020).

3.2 Household

Consider a representative household that consumes a final consumption good, inelastically supplies labor

across sectors. The household owns all firms so that it receives firms’ profits as dividends. The household

derives utility only from consumption of the final good, with the utility function being the standard.

37A similar setup is considered in Bigio and La’O (2020).
38That is, τ0

n 6= τ1
n and τ0

n′ = τ1
n′ for all n′ 6= n. In the example of the CHIPS Act, sector n corresponds to the

semiconductor industry.
39See Bartelsman and Doms (2000) and Syverson (2011).
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Assumption 3.2 (Utility Function). The consumer’s utility function is strictly monotonic and contin-

uously differentiable in the final consumption good.

Assumption 3.2 means that there exists a one-to-one mapping between the utility level and consump-

tion of the final good. Based on this preference, the household chooses the utility-maximizing quantity

of the final consumption good subject to the binding budget constraint:

C = WL+ Π− T, (8)

where Π is firm’s total profit, and T indicates the tax payment to the government in the form of a

lump-sum transfer. I let the price index of the final consumption good be the numeraire.

3.3 Technologies

Economy-wide and sectoral aggregations. The economy-wide aggregator collects sectoral interme-

diate goods to produce a final consumption good Y using the production function F :

Y = F({Xi}i∈N), (9)

where F : RN
+ → R+, and Xi represents sector i’s intermediate good used for the production of the final

consumption good. In each sector i ∈ N, firm-level products are aggregated into a single sectoral good

Qi according to

Qi = Fi({qik}k∈Ni
), (10)

where Fi : RNi
+ → R+ represents the sector-specific aggregator that collects firms’ products in sector i

and qik denotes the quantity of firm k’s product.40

This aggregator satisfies the following standard assumptions.

Assumption 3.3 (Economy-Wide and Sectoral Aggregators). (i) The economy-wide aggregation function

F is increasing and concave in each of its arguments. (ii) For each i ∈ N, the sectoral aggregator Fi is

a) twice continuously differentiable and b) increasing and concave in each of its arguments.

40To economize on notation, I use the same notation qik to mean the demand for firm k’s good and firm k’s output
quantity. By doing this, I implicitly apply the market clearing condition to individual firms’ products, as the sectoral
aggregator is the only purchaser of firms’ products.
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Notice Assumption 3.3 does not require the sectoral aggregator Fi to exhibit constant returns to scale,

unlike in Liu (2019) and Bigio and La’O (2020). Under this assumption, both the economy-wide and

sectoral aggregators operate in perfectly competitive markets. The price index of sector i’s good Pi is

defined through the sectoral cost-minimization problem.41

A sectoral aggregator serves two purposes. First, it is a useful modeling device that allows us to unite

firms’ differentiated goods into a single homogeneous good (Bigio and La’O 2020; La’O and Tahbaz-Salehi

2022). The economic content of this aggregation is that every buyer of goods from sector i purchases the

same bundle of goods produced by the firms in that sector (Liu 2019). Second, from the perspective of an

individual firm, the sectoral aggregator acts as a “demand function” through which the firm’s strategic

interaction is mediated.

In order to make the model amenable to empirical analysis while maintaining flexibility, I restrict

the sectoral aggregator to take the form of a homothetic demand system with a single aggregator (HSA;

Matsuyama and Ushchev 2017).

Assumption 3.4 (HSA Inverse Demand Function). In each sector i ∈ N, the sectoral aggregator Fi

exhibits an HSA inverse demand function; that is, the inverse demand function faced by firm k ∈ Ni is

given by

pik =
Φi

qik
Ψi

(
qik

Ai(qi)
; Ii
)

with

Ni∑
k′=1

Ψi

(
qik′

Ai(qi)
; Ii
)

= 1, (11)

where Φi is a constant indicating the expenditure by sector i’s aggregator, Ψi represents the share of

firm k’s good in the expenditure of sector i’s aggregator, and Ai(qi) denotes the aggregate quantity index

capturing interactions between firms’ choices with qi := {qik′}k′∈Ni
.

From an individual firm’s perspective, the quantity index Ai(qi) in (11) summarizes the firm’s inter-

actions in sector i, and this is the only channel through which other firms’ choices matter to the firm’s

own decision.42 Put differently, Assumption 3.4 rules out the possibility that any other firm’s quantity

enters the firm’s inverse demand independently of Ai(qi). In this sense, Ai(qi) acts as a sufficient statistic

for other firms’ choices, as in Amiti et al. (2014) and Arkolakis et al. (2019).

Assumption 3.4 is slightly stronger than the original definition by Matsuyama and Ushchev (2017)

41See the unit cost condition (67) in Appendix C.2.
42Intuitively, instead of keeping track of every single one of other firms’ choices, the firm only needs to look at this

aggregate quantity.
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and requires that unobservable heterogeneity in the sectoral aggregator Fi(·) is equally imposed on all

products.43 Nevertheless, notice that this assumption does not imply that the inverse demand function

is common to all firms because the quantity index function Ai(·) is allowed to be asymmetric in its

arguments.

The HSA specification (11) is broad enough to accommodate a wide variety of aggregators, including

those that are commonly used in the international trade literature — for example, the constant elasticity

of substitution (CES), the symmetric translog (Feenstra and Weinstein 2017), the constant response

demand (Mrázová and Neary 2017, 2019), and the flexible class of non-CES homothetic aggregators

explored in Kimball (1995), Burstein and Gopinath (2014), and Arkolakis et al. (2019).44

Example 3.1 (CES aggregator). The CES aggregator is routinely assumed in the bulk of the macroeco-

nomics literature on international pricing (Atkeson and Burstein 2008; Amiti et al. 2014; Gaubert and

Itskhoki 2020). Consider the CES aggregator in sector i:

Fi({qik}k∈Ni
) :=

( Ni∑
k=1

δσiik q
σi−1

σi
ik

) σi
σi−1

,

where σi represents the elasticity of substitution specific to sector i, and δik is a demand shifter specific

to firm k’s product. Associated with this is the residual inverse demand curve faced by firm k:

pik =
δikq

− 1
σi

ik∑Ni
k′=1 δik′q

− 1
σi

ik′

Ri, (12)

where Ri is the total expenditure to sector i’s good. Suppose δi = δik = δik′ for all k, k′ ∈ Ni. Ac-

knowledging that Ri = Φi and letting Ai(qi) := (
∑Ni

k′=1 δiq
− 1
σi

ik′ )
σi
σi−1 , Assumption 3.4 is satisfied with

Ψi(x; Ii) := δix
σi−1

σi for all x ∈ Si.

Firm-level production. The firm-level production process combines labor and material inputs, where

the latter is a composite of sectoral intermediate goods along the production network. It is assumed that

all inputs are variable (i.e., firms do not incur fixed costs). To focus on the short-run behavior, I do not

model the firms’ entry decisions; instead, I assume that each sector is populated by an exogenously fixed

number of firms that are heterogeneous in productivities.

43This assumption is adopted only to simplify identification and estimation and can be relaxed at the cost of an additional
technicality. See Kasahara and Sugita (2023).

44See also Matsuyama and Ushchev (2017), Kasahara and Sugita (2020), and Matsuyama (2023) for other examples.
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In the output market of each sector, firms engage in a Cournot competition of complete information,

while they are perfectly competitive in the input markets. Thus, each firm first chooses its output quantity

so as to maximize its profits in the Cournot-quantity competition, followed by input decisions based on

cost-minimization problems under the constraint of output quantity.

The production technology for firm k in sector i is described by

qik = zikfi(`ik,mik) with mik = Gi({mik,j}j∈N), (13)

where qik, `ik, and mik denote, respectively, the quantity of gross output, labor input, and material input,

zik is the firm’s Hicks-neutral productivity, mik,j represents the input demand for sector j’s intermediate

good, and fi : R2
+ → R+ and Gi : RN

+ → R+ represent the production technologies specific to the

sector.45 Note that Gi reflects the input-output linkages Ω.46

Example 3.2 (Nested Cobb-Douglas Production Function). The specification (13) includes the nested

Cobb-Douglas production function (e.g., Bigio and La’O 2020):

qik = zik`
αi
ikm

1−αi
ik with mik =

N∏
j=1

m
γi,j
ik,j , (14)

where αi stands for labor share specific to the sector, and γi,j is the share of sector j’s good in the material

input used by sector i with
∑N

j=1 γi,j = 1. In this setup, ωi,L = αi and ωi,j = (1− αi)γi,j.

Notice that both aggregators fi and Gi are only traced by sector index i, meaning that firms in the

same sector i have access to the same production technologies up to the idiosyncratic heterogeneous

productivity zik. This also implies that producer-side heterogeneity pertaining to product differentiation

(e.g., quality) is encoded in the productivity term zik.
47

Assumption 3.5 (Firm-Level Production Functions). For each sector i ∈ N, both aggregators fi and Gi

(i) display constant returns to scale, (ii) are twice continuously differentiable in all arguments, (iii) are

increasing and concave in each of its arguments, and (iv) satisfy fi(0, 0) = 0 and Gi(0) = 0. Moreover,

(v) for each firm k ∈ Ni in sector i, it holds that
(∂fi(·)
∂`ik

)2 ∂2fi(·)
∂m2

ik
+
(∂fi(·)
∂mik

)2 ∂2fi(·)
∂`2ik

−2∂fi(·)∂`ik

∂fi(·)
∂mik

∂2fi(·)
∂`ik∂mik

< 0

45I abstract away the capital accumulation in order to stick to a static environment. When bringing my model to the
data, I interpret the firm’s productivity zik as its overall production capacity, including capital assets. See Appendix B.3.3.

46Under specification (13), it holds that for each i ∈ N, ωi,L +
∑N
j=1 ωi,j = 1.

47In my setup, differentiated goods are produced by heterogeneous firms, so that the level at which product differentiation
is defined is the same as that at which firm heterogeneity is defined. Thus, the notion of firm coincides with that of variety.
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for all (`ik,mik) ∈ R2
+.

Assumptions 3.5 (i) – (iv) jointly state that the aggregators fi and Gi are neoclassical, an assumption

employed in Bigio and La’O (2020).48 Assumption (v) guarantees an interior solution for the firm’s cost

minimization problem.

Importantly, when a firm decides the quantity of output, it also takes into account its input decisions in

a forward-looking way. Thus, the firm’s decision problem proceeds backward. First, taking the quantities

of output and material input and sectoral price indices as given, the firm’s optimal demand for sectoral

intermediate goods is given by

{m∗ik,j}j∈N ∈ arg min
{mik,j}j∈N

N∑
j=1

(1− τi)Pjmik,j s.t. Gi({mik,j}j∈N) ≥ m̄ik, (15)

where m∗ik,j denotes the optimal level of purchase of sector j’s good, and m̄ik indicates the level of material

input corresponding to a given quantity of output. Note that the unit cost condition associated with (15)

defines the cost index of material input PMi gross of the policy τ .

Second, taking the output quantity and input prices as given, the optimal input quantities for firm k

in sector i are given by

{`∗ik,m∗ik} ∈ arg min
{`ik,mik}

W`ik + PMi mik s.t. zikfi(`ik,mik) ≥ q̄ik, (16)

where W denotes the wage49 and q̄ik is a given level of output quantity.

Remark 3.1. Input decisions (15) and (16) are separated purely for expositional purposes. These two

problems can be collapsed into a single cost-minimization problem, in which labor input and demand for

sectoral goods are chosen simultaneously.

Third, taking the competitors’ quantity choices and aggregate variables as given, firm k in sector

i chooses the quantity of output qik ∈ Si := R+ ∪ {+∞} to maximize its profit.50 Let πik(·, ·; Ii) :

Si×S Ni−1
i → R represent firm k’s profit function that maps its own quantity choice qik and competitors’

48Although Assumption 3.5 (i) might appear to be restrictive at first glance, a number of applied studies have found that
the constant returns to scale serves as a good approximation (e.g., Basu and Fernald (1997), Syverson (2004), Foster et al.
(2008), and Bloom et al. (2012)). The CRS production functions are customarily assumed by recent works on firm-level
macroeconomic models — for example, (Atkeson and Burstein 2008) in an oligopolistic competition model of international
trade and Baqaee and Farhi (2022) in a multi-country model of international trade in the presence of production networks.

49Since the labor force is assumed to be frictionlessly mobile across sectors, the wage W is common for all sectors.
50The firm’s profit here is defined as revenue minus variable costs.
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choices qi,−k := {qik′}k′∈Ni\{k} to the profit under the information set Ii:

Ii := {Y, {Xj}j∈N, {Qj}j∈N\{i},W, P
M
i , {zik}k∈Ni

,ωL,Ω, τ }.

The construction of Ii reflects the fact that when firms in sector i make quantity decisions, they take

these aggregate variables as fixed while internalizing the possibility of the sectoral aggregate quantity Qi

and the associated price index Pi varying as a result of their own decisions.51 Note that the sectoral cost

index for material input PMi is taken as given. All sectoral price indices {Pj}j∈N are determined to be

consistent with all sectoral cost indices for material input {PMj }j∈N in the aggregate equilibrium. The

inclusion of the firms’ productivities {zik}k∈Ni
partly embodies the complete information structure of

the strategic interaction. For each i ∈ N, the Cournot-Nash equilibrium quantities q∗i := {q∗ik}k∈Ni
must

satisfy the following system of equations:

q∗ik = arg max
q

πik(q,qi,−k; Ii) ∀k ∈ Ni. (17)

The existence of Cournot-Nash equilibria in each sector immediately follows from the Debreu-Glicksberg-

Fan theorem (Debreu 1952; Fan 1952; Glicksberg 1952).

3.4 Government

The government sets the level of subsidies τ under the balanced budget. Government expenditures

consist of two components. First, the government purchases the final consumption good, which can be

conceived as public spending G. The second element refers to the total policy expenditure Si in sector i.

The residual between these two expenditures is charged to the representative consumer in the form of a

lump-sum tax T . Hence, the government’s budget constraint is

G+

N∑
i=1

Si = T where Si :=

Ni∑
k=1

N∑
j=1

τiPjmik,j . (18)

3.5 Equilibria

51Note that, as seen in (20), government spending G can be dropped under (8), (18), and (19).
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3.5.1 Market Clearing

Since the final consumption good is either consumed by the household or purchased by the government,

the market clearing condition for the final consumption good reads

Y = C +G. (19)

Substituting (8) and (18) into (19), it follows that

Y = WL+ Π−
N∑
i=1

Si, (20)

which is nothing but the income accounting identity of GDP.

Sectoral intermediate goods are used either for producing the final consumption good or as input in

an individual firm’s production: for each j ∈ N,

Qj = Xj +

N∑
i=1

Ni∑
k=1

mik,j . (21)

Labor L is assumed to be inelastically supplied, fully employed, and frictionlessly mobile across sectors

and firms, thus satisfying

L =
N∑
i=1

Ni∑
k=1

`ik. (22)

3.5.2 Equilibria Defined

I assume that subsidies τ are exogenously determined (by the government).52 Under Assumption 3.1, the

numbers of sectors N and firms Ni, firm’s productivities zik, and the network structures ωL and Ω are

invariant to a policy shift, while other aggregate variables are endogenously determined in equilibrium.

Defining the equilibria in this model amounts to finding a fixed point in the endogenous firm-level and

aggregate variables. I use the symbol ∗ to denote the equilibrium values.

Definition 3.1 (General Equilibria). Given the realization of firms’ productivities {{zik}k∈Ni
}i∈N, sector-

specific subsidies τ , and the input-output linkages ωL and Ω, the general equilibria of this model are defined

as fixed points that solve the following problems:

52I abstract from issues of endogenous policies, such as in Grossman and Helpman (1994).
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Sectoral equilibria: For each sector i, given the information set Ii, the solution to the quantity-

setting game (17) yields a vector of sectoral Cournot-Nash equilibrium quantities {q∗ik}k∈Ni
, followed

by the cost-minimization problems (15) and (16) to derive the optimal labor and material inputs

{`∗ik,m∗ik}k∈Ni
, and input demand for sectoral intermediate goods {{m∗ik,j}j∈N}k∈Ni

.

Aggregate equilibria: Given a collection of sectoral equilibrium quantities {q∗ik, `∗ik,m∗ik, {m∗ik,j}j∈N}i,k,

an aggregate equilibrium is referenced by the set of aggregate quantities {Y ∗, {X∗j , Q∗j}j∈N} together

with the set of aggregate prices {W ∗, {P ∗j }j∈N}, such that i) the household maximizes its utility

subject to (8), ii) the income accounting identity (20) holds, and iii) the market clearing conditions

for composite intermediate goods (21) and labor (22) are satisfied.53

3.6 The Object of Interest

Recall from Section 3.1 that the policymaker hopes to learn how much GDP would change due to the

policy reform from τ0
n to τ1

n. Let Y τ be the country’s GDP in equilibrium under policy regime τ . From

(20) and (22), it follows that

Y τ =
N∑
i=1

Yi(τ ) where Yi(τ ) :=

Ni∑
k=1

(
W ∗`∗ik + π∗ik −

N∑
j=1

τiP
∗
jm
∗
ik,j

)
, (23)

where πik stands for firm k’s profit. In (23), Yi(τ ) can be viewed as sectoral i’s GDP, with each of its

summands corresponding to an individual firm’s contribution.54

Now the object of interest ∆Y (τ0
n, τ

1
n) is defined as

∆Y (τ0
n, τ

1
n) :=

N∑
i=1

Yi(τ
1)−

N∑
i=1

Yi(τ
0). (24)

While a variety of “causal effects” of an industrial policy have been proposed in the empirical treatment-

effect literature, they do not necessarily speak to policy-relevant questions such as those considered in

this paper.55 The policy parameter (24) directly compares the country’s GDP under τ 0 to that under

τ 1 and thus answers the important macroeconomic question. A virtue of this parameter is that under

53The market clearing condition for individual firms’ products is straightforward, as firm-level products are only used by
the sectoral aggregator. Thus, it is already implicitly applied in the exposition.

54Each summand can be rearranged as W ∗`∗ik +π∗ik−
∑N
j=1 τiP

∗
j m
∗
ik,j = pikqik−

∑N
j=1 P

∗
j m
∗
ik,j , which is the value added

gross of the firm’s markup.
55See Lane (2020) and Juhász et al. (2023).
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Assumption 3.1, it represents an intensive-margin causal effect of the policy reform in the sense of a ceteris

paribus change in an outcome variable across different policy regimes (Marshall 1890). The construction

of (24) shares the same vein with the policy-relevant treatment effect (Heckman and Vytlacil 2001, 2005,

2007).

Remark 3.2. The growth rate %∆Y (τ0
n, τ

1
n) of the kind studied in Arkolakis et al. (2012) and Adão et al.

(2017) can be obtained as %∆Y (τ0
n, τ

1
n) := 1

Y τ0 ∆Y (τ0
n, τ

1
n).

4 Data

This section briefly describes the dataset used in my empirical analysis and the procedures by which I

construct the empirical counterparts to the variables in my framework.56 My dataset spans between 2007

and 2021, but I do not exploit its time-series feature; rather, I regard it as a collection of snapshots of

the same economy with varying levels of subsidies. In this way, I can construct “repeated samples.” I

assume that the observations are generated from an equilibrium (see Assumption 5.1).

4.1 Wage and Price Indices

Data on wage and labor hours worked are taken from the U.S. Bureau of Labor Statistics (BLS) through

the Federal Reserve Bank of St. Louis (FRED) at an annual frequency. Consistent with my conceptual

framework, I use the average hourly earnings of all employees as my data counterpart for the wage W ∗.57

I obtain data on sectoral price index P ∗i from the GDP by industry data at the Bureau of Economic

Analysis (BEA), wherein the industries in the BEA data are used as the empirical counterparts of sectors

in my framework.

4.2 Input-Output Tables

Following Baqaee and Farhi (2020), I adopt the annual U.S. input-output data from the BEA, omitting

the government, noncomparable imports, and second-hand scrap industries. The data contain industrial

output and input for 66 industries and cover the period from 1995 to 2015. I further follow Gutiérrez and

Philippon (2017) in segmenting the industries into a coarser categories, leaving us with 38 industries.

56The details are provided in Appendix B.
57Recall that labor is assumed to be frictionlessly mobile across sectors, which implies that the wage is the same everywhere

in the economy.
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Each input-output account comes with two distinct tables, namely, the use and supply tables. The use

table reports the amounts of commodities used by each industry as intermediate inputs and by final user,

and the value added by each industry. The value-added section of the use table includes compensation of

employees and taxes on products less subsidies for each purchaser industry. Each cell in the supply table

indicates the amount of each commodity produced by each industry.

To transform the use table into an industry-by-industry format, I make the following assumption: each

product has its own specific sales structure, irrespective of the industry where it is produced (Assumption

B.1). Here, the sales structure refers to the shares of the respective intermediate and final users in the

sales of a commodity. Under this assumption, I can convert the commodity-by-industry use table to the

industry-by-industry table, thereby conforming to my conceptual model of the production network Ω (see

Appendix B.2.1 for details). Using the compensation of employees, I can also construct data for ωL.58

The transformed input-output table can further be used to back out data for τ as a value-added net

subsidy, which is understood as an amalgamate of sales and input subsidies.

4.3 Compustat Data

The dataset for firm-level variables is Compustat, which is assembled by S&P and provided by Wharton

Research Data Services (WRDS). The Compustat data record information about firm-level financial

statements, such as sales, input expenditure, capital stock information, and detailed industry activity

classifications, from 1950 to 2016. From this data, in conjunction with the data on aggregate variables,

I first construct measurements for firm-level revenue r∗ik, labor `∗ik, and material m∗ik inputs. I follow

De Loecker et al. (2020) in eliminating outliers.

Since, however, the dataset does not offer a further breakdown of material input, I need to apportion

the expenditure on material input to generate separate information about the demand for sectoral inter-

mediate goods. This requires an explicit functional-form assumption on the material input aggregator Gi

in (13). In this paper, I employ a Cobb-Douglas production function:

mik =
N∏
j=1

m
γi,j
ik,j , (25)

where mik,j is sector j’s intermediate good demanded by firm k in sector i and γi,j denotes the input

share of sector j’s intermediate good with
∑N

j=1 γi,j = 1. A virtue of this specification is that the pro-

58Throughout the transformation, the value-added section of the use table remains intact.
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duction network across sectoral intermediate goods {ωi,j}j∈N is directly reflected in the output elasticity

parameters {γi,j}j∈N, which are constant.59 This property is plausible in light of the particular focus of

this paper on the short-run effects of the policies.60 Under this specification, the input demand for sector

j’s good m∗ik,j is given by

m∗ik,j = γi,j
PMi

∗

(1− τi)P ∗j
m∗ik, (26)

where PMi
∗
m∗ik indicates the expenditure on material input gross of subsidies, which can be obtained in

the data (see Fact B.5).61

I admit the possibility that the data on firm-level revenues and costs are subject to measurement

errors.62 Importantly, the Compustat data do not provide information about output quantity and price.

To recover these variables from the observables that are possibly prone to measurement errors, I leverage

a methodology that has recently been developed in the industrial organization literature (see Section 5.2).

5 Identification and Estimation

This section discusses identification of the object of interest (24) based on the model laid out in Section

3 and the dataset described in Section 4. The identification results are constructive, which naturally

validates the use of nonparametric plug-in estimators.

To simplify the identification analysis, I make two sets of assumptions. First, since the inverse demand

functions faced by firms are left unspecified beyond the HSA specification (11), the best response functions

(17) can be highly nonlinear in competitors’ choices, which raises a concern about the multiplicity of

equilibria. To sidestep this issue, I impose assumptions on the equilibrium selection probability. Second,

I focus on a situation where the policymaker is only interested in changing the policy within the historically

observed support. Let T := ×Ni=1Ti where Ti ⊆ R represents the observed support of τn.

Assumption 5.1 (Equilibrium Selection). (i) The observations in the data are generated from a single

59The Cobb-Douglas production function has traditionally been used in a wide range of the macroeconomics literature —
for example, the real business cycle theory (Long and Plosser 1983; Horvath 1998, 2000) and international trade (Caliendo
and Parro 2015; Grassi 2017; Bigio and La’O 2020). The recent literature has emphasized the importance of an endogenous
input-output structure of the economy and employed a CES aggregator (e.g., Atalay 2017; Baqaee and Farhi 2019; Caliendo
et al. 2022).

60See Assumption 3.1.
61In Appendix B.3.2, I further derive an explicit expression for PMi

∗
.

62I assume additive separability in terms of log variables.
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equilibrium. (ii) The equilibrium that is played does not change over the course of the policy reform.

Assumption 5.2 (Support Condition). [τ0
n, τ

1
n] ⊆ Tn

Assumption 5.1 (i) states that the equilibrium selection probability is degenerated to a single equi-

librium, and the condition (ii) means that it is this single equilibrium that will be chosen in the policy

counterfactuals.63 Assumption 5.1 is widely used in the literature of discrete choice models (Aguirre-

gabiria and Mira 2010).64 Assumption 5.2 excludes the scenario that the new policy is such a policy that

has never been implemented before. Assumptions 5.1 and 5.2 could jointly be relaxed at the expense of

additional assumptions, as studied by Canen and Song (2022).65

To solve the evaluation problem, it is essential to distinguish the policymaker’s (or the observing

econometrician’s) information set from the agent’s information set.66 In light of Sections 3 and 4, the

policymaker’s information set IG is defined as

IG := {Y ∗, {X∗j }j∈N, {Q∗j}j∈N,W, {P ∗j }j∈N,ωL,Ω, τ 0, τ 1, {{rjk, `∗jk,m∗jk}k∈Nj
}j∈N}.

Several remarks on this information set are in order. First, the inclusion of τ 1 reflects the premise that

the policy variables can be manipulated by the policymaker. Second, the firm’s equilibrium revenue r∗ik is

not available in IG; and the observed firm’s revenue rik is contaminated by a measurement error. Third,

the firm’s productivity zik is not known to the policymaker by definition (Section 3). Lastly, the firm’s

equilibrium output price p∗ik and quantity q∗ik are not included in IG due to the construction of data

(Sections 4).

5.1 Identification Strategy

Under Assumptions 3.1 and 5.2, the object of interest (24) is equivalently rewritten as

∆Y (τ0
n, τ

1
n) =

N∑
i=1

Yi(τ
1)−

N∑
i=1

Yi(τ
0) =

N∑
i=1

∫ τ1

τ0

dYi(s)

ds
ds. (27)

63The latter is embodied in Assumptions C.6 and C.7.
64Notice that Assumption 5.1 only restricts the equilibrium selection probability and does not exclude the possibility of

multiple equilibria per se.
65See the discussions in Sections 6 and 7.
66It is tacitly assumed that as far as the information set is concerned, the government, which is an agent of the model, is

identical to the econometrician outside the model.
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Our identification argument builds on (27) and aims to identify the integrand dYi(s)
ds for all s ∈ [τ 0, τ 1].

Total differentiation of (23) at an arbitrary point τ ∈ [τ 0, τ 1] delivers

dYi(s)

ds

∣∣∣∣
s=τ

=

Ni∑
k=1

{
d(p∗ikq

∗
ik)

dτn
−

N∑
j=1

d(P ∗jm
∗
ik,j)

dτn

}
, 67 (28)

where the first term on the right-hand side represents the marginal change in firm k’s revenue, and the

second term indicates the marginal change in the value of sectoral intermediate goods used by firm k.

Intuitively, (28) states that the responsiveness of sectoral GDP is equivalent to the sum of the marginal

changes in firms’ revenues minus the marginal changes in firms’ expenditures net of subsidies.

The existing approach to recover (28) is to characterize its left-hand side in terms of aggregate

variables that are directly observed in the data (e.g., Arkolakis et al. 2012, 2019; Adão et al. 2020). Their

aggregation results crucially hinge on the modeling assumption of a mass of continuum of firms. Under

this assumption, individual firms are infinitesimally small and thus inconsequential to the aggregate

variables owing to the law of large numbers (Gaubert and Itskhoki 2020). By contrast, my framework

embraces only a finite number of firms, in which case firm-level idiosyncrasies are not washed away even

in the aggregate. My approach is rather to recover each of the firm-level responses on the right-hand

side of (28). In doing so, I apply the control function approach that has been developed in the industrial

organization literature. As a by-product, the characterization result of this paper does not rely on the

approximation of (28) around the economy with no pre-existing policies (i.e., τ 0 = 0), as employed in

Liu (2019) and Baqaee and Farhi (2022).

Remark 5.1. (i) The idea behind (28) resembles the exact hat algebra (Dekle et al. 2007, 2008), a method

that is routinely used to generate a counterfactual prediction in the literature (e.g., Caliendo and Parro

2015; Adão et al. 2017, 2020).68 My approach is distinct in two ways, however. First, the exact hat

algebra is not principally concerned with the identification and estimation of the comparative statics; it

only calculates the comparative statics taking model parameters as known (Dingel and Tintelnot 2023). My

paper provides a unified framework for the identification and estimation of both “model parameters” and

the comparative statics. Second, the presumption of exact hat algebra is that all endogenous equilibrium

variables are observable. This requirement, however, is not fulfilled in my case as firm-level quantity

q∗ik and price p∗ik are not available in the data (see Section 4). In Section 5.2, I provide a path forward

67With a slight abuse of notation, for an equality V ∗ = V (s), I write dV (s)
ds

∣∣∣
s=τ

= dV ∗

dτn
.

68See Costinot and Rodŕıguez-Clare (2014) for an outline of the method.
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to move on in the presence of these unobservable endogenous variables. (ii) The left-hand side of (28)

alone may be of limited practical relevance because it only measures the impact of an infinitesimally small

policy change around τ 0 (e.g., Caliendo and Parro 2015). My target parameter (24), in contrast, can be

used to analyze a large policy reform from τ 0 to τ 1.69 (iii) While useful as an approximation around the

equilibrium in response to a small shock, the common practice of setting τ 0 = 0 (e.g., Liu 2019; Baqaee

and Farhi 2022) is rarely feasible in empirical research because in most cases it is that 0 /∈ T .70

Remark 5.2. (i) The target parameter (24) is analogous to the one considered in the welfare gains

literature such as Arkolakis et al. (2012) and Adão et al. (2020). But my framework is conceptually

distinct from these works. Typically, the literature proceeds in three steps. First, the welfare gains (e.g.,

changes in real income) from shocks are expressed in terms of observable or estimable variables. For

example, Arkolakis et al. (2012) characterizes the welfare gain %∆W of moving to autarky in terms of

the “trade elasticity” ε and the domestic absorption share λ: e.g., %∆W = 1−λ1/ε. Second, the literature

estimates the trade elasticity ε̂ from data, while λ is usually directly observed in data. Lastly, the estimate

is plugged in back to the characterization formula, e.g., %̂∆W = 1− λ1/ε̂.

In identifying and estimating the trade elasticity, the literature assumes that the policy variables are a

realization from a well-defined probability distribution. Although justified by their focuses on the welfare

gains from “shocks,” this assumption may not conform to the ex ante policy evaluation in two ways. First,

this assumption deprives the policymaker of control over the policy variables. Second, the characterization

formula merely corresponds to one realization of (infinitely) many possible welfare gains because ex ante

the values of the policy variables are known to the policymaker (or the econometrician) only up to their

probabilistic properties. This means that the characterization formula is only useful if the object of interest

is the ex post assessments of the responses to shocks (e.g., policy shocks caused by foreign authorities).71

By contrast, my framework builds on the premise that the policy changes are chosen on the basis of

the policymaker’s own will (e.g., policy reforms by the domestic government). In this sense, this paper

complements the welfare gains literature. Moreover, this paper naturally fits into the problem of optimal

69In a related vein, Baqaee and Farhi (2022) investigate the consequences of discrete changes in distortions. Assuming
away from any distortions in the initial state of the economy, they provide a second-order approximation for the responses
of real GDP and welfare. Accordingly, the discrete changes in their characterization need to be small enough to make the
second-order approximation sufficiently good. By contrast, this paper derives an exact formula that is valid for discrete
changes of arbitrary size (as long as they are in the historically observed support) from the current policy regime, which
may not necessarily be efficient. See also Kleven (2021) for a discussion.

70See the discussion below Assumption 5.2.
71When the ex ante evaluation of the effects of shocks is the object of interest, the appropriate criterion in this paradigm

should involve the probability distribution of the shocks.
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policy design.

(ii) For the purpose of identification and estimation, the welfare gains literature typically exploits

variation in fundamentals (e.g., policy variables), consistent with its focus on “shocks.” My framework

treats the policy variables as given and instead utilizes the variation in firms’ productivities, which are

assumed to be heterogenous (see Section 3.3). Note that while firms’ productivities are unobservable to

the policymaker, they can be translated into firms’ input choices, which are observable, through a control

function (see Section 5.2).

5.2 Identification

Identifying (28) proceeds in two steps: namely, the middle and bottom layers. The middle layer delivers

comparative statics by solving systems of equations, conditional on the values of firm-level variables, and

derivatives of the firm-level production and inverse demand functions (Appendix C.3). Notice here that

a) firm-level quantity and price are not observed in my dataset (see Section 4), and b) derivatives of the

firm-level production and inverse demand functions are not known by definition (see Section 3). These

are recovered in the bottom layer with the aid of techniques from the industrial organization literature.

This subsection describes how I address these issues in turn.

First, to recover firm-level price and quantity from the revenue and cost data, I exploit the firm’s

optimization conditions for the input choices and apply the method developed in Kasahara and Sugita

(2020).72 Applying their method in my context, however, requires an additional assumption because when

firms decide their output quantities in the strategic interactions, they foresee the competitors’ output

and input choices as well as their own input choice, letting the strategic interactions effectively carry over

input decisions, a feature absent in Kasahara and Sugita (2020).73

To insulate the input decisions from the strategic interactions, I push forward the insight that under

the specification of the HSA demand system (11), competitors’ choices matter only through a single

72It has long been recognized that the use of the quantity measure of revenue data — revenue data deflated by price
index — as a proxy for quantity data induces an omitted price bias (Klette and Griliches 1996) and masks the demand-
side heterogeneity encoded in firm-specific price variables. See, for example, Klette and Griliches (1996), Doraszelski and
Jaumandreu (2019), Flynn et al. (2019), Bond et al. (2021), Kirov et al. (2022), and Kasahara and Sugita (2020) for the
details.

73The host of the literature on the identification of production functions assumes away from strategic interactions. For
example, in the context of the control function approach, Ackerberg et al. (2015) and Gandhi et al. (2019) assume perfectly
competitive markets, and Kasahara and Sugita (2020) focus on monopolistic competition. Doraszelski and Jaumandreu
(2019) and Brand (2020) point out that the canonical scalar unobservability assumption eliminates the possibility of strategic
interactions and examine the extent to which the estimates are biased if the standard approach is mistakenly used. Matzkin
(2008) considers the identification of a system of equations permitting strategic interactions, but requires linear separability
in excluded regressors, which may not be supported on theoretical grounds in my context.
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aggregator.74 Let Li and Mi denote the observed supports of labor and material inputs, respectively.

The following assumption extends the scalar unobservability and strict monotonicity assumptions of the

literature (see, e.g., Ackerberg et al. 2015; Gandhi et al. 2019) at the cost of limiting the path by which

competitors’ productivities enter the firm’s quantity decision.

Assumption 5.3. For each i ∈ N, there exist some functions χi : R+×R→ Si and Hi : RNi
+ → R such

that (i) q∗ik = χi(zik, Hi(zi)) with zi := {zik}k∈Ni
, and (ii) ∂χi(·)

∂zik
6= 1.

Under Assumption 5.3, there exist some functions Hi : RNi
+ → R and Mi : Li ×Mi ×R→ Zi such

that

zik =Mi(`ik,mik,Hi(zi); Ii) ∀k ∈ Ni. (29)

In this sense, Assumptions 5.3 (i) and (ii) correspond, respectively, to the scalar unobservability as-

sumption and the strict monotonicity assumption (e.g., Ackerberg et al. 2015; Gandhi et al. 2019). The

expression (29) allows the econometrician to control for unobservable productivity in terms of observable

labor and material inputs. The literature resorts to the timing assumption to derive the control function,

while the expression (29) stems only from the constraint faced by the cost-minimizing firm.

The equation admits an interpretation analogous to the quantity index Ai(·) in Assumption 3.4;

that is, Hi(zi) is a sufficient statistic for the competitors’ productivities, and it can most naturally be

understood as a measure of the overall competitiveness of the market.75 Given that the information

structure of the oligopolistic competition is complete, its value is known to all firms in the same sector

but not necessarily known to the econometrician.

Assumption 5.3, together with Assumption 3.4, permits a variety of specifications for both sector- and

firm-level production functions. Continuing Examples 3.1 and 3.2, I demonstrate that these assumptions

are satisfied in a model widely used in the international trade literature.

Example 5.1 (Duopoly with a CES Sectoral Aggregator). Consider the setup outlined in Examples 3.1

and 3.2. To make my claim as transparent as possible, I focus on the case of duopoly (k ∈ {1, 2}). In

this case, the Cournot-Nash equilibrium prices p∗i := {p∗i1, p∗i2} satisfy the following system of equations:

74In general, this idea extends beyond the HSA demand system insofar as the competitors’ decisions are encapsulated in
a single aggregator. See Appendix C.1.

75Since Hi(·) is only indexed by sector i, it could in principle be absorbed by the subscript of Mi. Nevertheless, I prefer
to leave it explicit to emphasize the existence of strategic interactions.
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p∗ik = σ
(σ−1)(1−sik(p∗i ))mci(zik), with sik(p

∗
i ) :=

δσi p
∗
ik

1−σ

δσi p
∗
i1

1−σ+δσi p
∗
i2

1−σ where mci(zik) := z−1
ik mci is the firm k’s

marginal cost that depends on the firm’s productivity.76 Solving this yields q∗ik = σ−1
σ Rimc

−σ
i Hi(zi)zσik,

where Hi(zi) :=
δ2
imci(zi1)

1−σ
σ mci(zi2)

1−σ
σ

(δimci(zi1)
1−σ
σ +δimci(zi2)

1−σ
σ )

σ2−σ+2
σ

. This conforms to Assumption 5.3 as long as σ 6= 1.

Taking this expression as given, the input decision is constrained by the production possibility fron-

tier at output level q∗ik: zik`
αi
ikm

1−αi
ik = σ−1

σ Rimc
−σ
i Hi(zi)zσik. Upon solving this for zik, I obtain zik =

{σ−1
σ Rimc

−σ
i Hi(zi)`

−αi
ik m

−(1−αi)
ik }

1
1−σ . Thus, there exists a functionMi such that zik =Mi(`ik,mik,Hi(zi); Ii),

yielding the expression (29).

Second, to recover the first- and second-order derivatives of both the firm-level production function and

the residual inverse demand functions faced by firms, I exploit the information about the firm’s production

function. Under the Hicks-neutral productivity specification (14) and CRS assumption (Assumption 3.5),

the derivatives of the production functions are pinned down by the markup-augmented cost share, and

labor and material inputs through a method developed by Gandhi et al. (2019). Moreover, combining the

HSA specification (11) and the identified firm-level quantities and prices, I can also recover the derivatives

of the residual inverse demand functions faced by firms, as studied in Kasahara and Sugita (2020).

Theorem 5.1 (Identification of the Object of Interest). Suppose that Assumptions 5.1, 5.2 and 5.3 hold.

Then, the object of interest (24) is identified from the observables.

Proof. See Appendix C.5.

A version of Theorem 5.1 remains valid for the case of monopolistic competition with the solution

concept being appropriated modified.

Corollary 5.1. Suppose that firms operate within a structure of monopolistic competition in the output

market. Then, the object of interest (24) is identified from the observables.

Remark 5.3. Although this paper focuses on the difference in GDP with respect to a policy change (24) as

a principal object of policy interest, my framework recovers all firm-level responses — the finest ingredients

of the model — and thus can be applied to study other policy parameters. First, the volume of unilateral

trade flow from sector j to i is given by Ui,j =
∑Ni

k=1mik,j, so that its response to a policy change is

dUi,j
dτn

=
∑Ni

k=1
dmik,j
dτn

, where
dmik,j
dτn

is identified in my framework. Moreover, the volume of bilateral trade

76In Example 5.1, mci represents part of the marginal cost common across firms in the same sector and is given by
mci = α−αi

i (1− αi)1−αiWαi(PMi )1−αi .
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flow between sector i and j, denoted by Bi,j, can be analyzed similarly because of Bi,j = Ui,j + Uj,i.
77

Second, the difference in consumption before and after a policy change can be analyzed if government

spending is fixed. When G is fixed, totally differentiating (19) yields dY
dτn

= dC
dτn

. Third, for the producer

side, other types of treatment effects of interest include the average treatment effect on the treated and that

on the untreated.78 Moreover, it is also possible to identify both the sector- and firm-level distributional

causal effects.

5.3 Estimation

Since the identification results demonstrated above are constructive, I build on the analogy principle to

obtain a nonparametric estimator for the policy effect (24).79 I first nonparametrically estimate the values

of the firm-level quantity and price, and the first- and second-order derivatives of the firm’s production

function. Guided by the theory, I then combine these to derive the nonparametric estimator for (24).

Given that the object of interest is continuous with respect to the exogenous variables, the resulting

estimator is consistent. The accuracy of my estimator is verified through a numerical simulation in

Appendix E.

As stated in Section 4, I acknowledge the possibility that the data on firm-level revenues and costs are

contaminated by measurement errors. To purge the measurement errors, my estimation of the firm-level

quantity and price follows the convention of the industrial organization literature in applying a polyno-

mial regression of degree two. In estimating the firm’s production elasticities, I follow the specification

suggested in Gandhi et al. (2019). See Appendix D for the details.

6 Empirical Application: CHIPS and Science Act of 2022

In this section, I bring my framework to the real-world data described in Section 4. As a policy nar-

rative, I investigate the recent episode of the CHIPS and Science Act (CHIPS), which was passed into

law in 2022 and aims to invest nearly $53 billion in the U.S. semiconductor manufacturing, research and

development, and workforce (White House 2023). This policy also includes a 25% tax credit for manufac-

77For the inference of dyadic variables such as unilateral and bilateral trade flows, I recommend using the network-robust
standard error proposed by Canen and Sugiura (2023).

78The empirical treatment-effect literature on industrial policies has mostly looked at the average treatment effect on the
treated industry. See Lane (2020).

79Our approach takes a stance on estimation rather than calibration. See Hansen and Heckman (1996) for a discussion
concerning the pros and cons of these two methods. See also Matzkin (2013) for nonparametric estimation.
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turing investment, which is projected to provide up to $24.25 billion for the next 10 years (Congressional

Budget Office 2022). In my model, this tax credit can be analyzed as an additional subsidy targeted at

the computer and electronic product manufacturing industry (Appendix B.2.2), which is indexed by n.

Simply dividing the estimated $24.25 billion by 10 years implies $2.43 billion per year. This corresponds

to raising the subsidy to 19.23%.80 In my dataset, the historically observed support for a subsidy on this

industry is between 3.51% and 16.26%.81

However, analyzing the whole part of this policy requires the researcher to send the value of the

subsidy to outside the observed support, while my identification result hinges on the “within the observed

support” assumption (Assumption 5.2). Extending my analysis to outside the support is possible at the

cost of additional assumptions, as explored in Canen and Song (2022). But this goes beyond the scope

of this paper and is left for future work. Instead, the exercise of this section focuses on a part of the

CHIPS subsidy. Specifically, I consider a hypothetical policy scenario of increasing the subsidy on the

semiconductor industry from the 2021 level of 14.94% to an alternative ratio of 16.00% — equivalent

to $0.56 billion.82 This accounts for approximately one-fourth of the per-year tax credit.83 Note that

this policy scenario satisfies Assumption 5.2. It is assumed that the semiconductor industry is the only

industry that is directly targeted during this policy reform.

The goal of this section is to estimate the change in GDP due to this counterfactual industrial policy

as well as to analyze the mechanism behind the estimated policy effect. In Section 6.1, I first calculate

the estimate of the policy effect (24). To shed light on the policy relevance of accounting for strategic

interactions, I carry out the estimation for both monopolistic and oligopolistic cases.84 In Section 6.2, I

take advantage of the structural construction of my framework to provide a breakdown of the gains and

losses of the policy reform into the sector-level price and quantity effects. To understand the determination

of these effects, I further delve into the comovement of sectoral price and material cost indices.

80The total amount of value-added tax in 2021 is $8.44 billion, and the total expense on material input is $56.53 billion.
Hence, (8.44 + 2.43)/56.53× 100 = 19.23%. See Appendix B.2.2.

81In the dataset, the semiconductor subsidy was 3.51% in 2007 and 16.26% in 2019. In terms of the notation in Section
3, it is represented as Tn = [0.0351, 0.1626].

82To make the analysis as close to reality as possible, we set the current policy regime to the latest year available, which
is 2021. In terms of the model, this policy reform can be expressed by letting τ0

n = 0.1494 and τ1
n = 0.1600.

83Observe that 16−14.94
19.23−14.94

= 0.2471. One way to interpret this policy scenario is that it takes time to put the whole part
of the CHIPS Act into effect, and what can be realized in the short run is only a part of it. This view is consistent with the
short-run perspective of this paper.

84In view of Corollary 5.1, these two cases are analyzed in a unified framework.
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6.1 The Policy Effect: Change in GDP

Based on (27), I estimate the change in GDP due to the policy reform from τ0
n = 0.1494 to τ0

n = 0.1600. An

advantage of my approach is that the responsiveness of GDP can be traced out as a (possibly nonlinear)

function of the subsidy over [τ0
n, τ

1
n]. For computation purposes, I divide this interval evenly into a fixed

number of segments and calculate the estimate according to

∆̂Y (τ0
n, τ

1
n) ≈

v̄−1∑
v=0

N∑
i=1

̂dYi(s)

ds

∣∣∣∣
s=τ0

n+v∆τn

×∆τn, (30a)

where the symbol ̂ is used to denote an estimator or estimate, and ∆τn := τ1
n−τ0

n
v̄ with v̄ being the

number of bins equally segmenting the interval [τ0
n, τ

1
n].85 To highlight the consequence of ignoring the

nonlinearity, I also estimate the policy effect using the following approximation:

∆̂Y (τ0
n, τ

1
n) ≈

N∑
i=1

̂dYi(s)

ds

∣∣∣∣
s=τ0

n

× (τ1
n − τ0

n). (30b)

That is, the estimate is computed by assuming that the responsiveness of GDP is constant throughout

the course of the policy change at the level of the current policy regime.

Table 2 compares the estimates for the policy effect based on (30a) and (30b) in both cases of

monopolistic and oligopolistic competition. Two things stand out about this table. First, the estimate

(30a) under oligopolistic competition is almost twice as large in magnitude as that under monopolistic

competition. This reflects the impact of the policy reform coming through the strategic interactions

as studied in Section 2. The substantial discrepancy between these two estimates highlights the policy

relevance of strategic interactions. Second, regardless of the type of market competition, the estimates

based on (30b) are quantitatively significantly different from those based on (30a).86 This underlines the

substantial degree of nonlinearity in the responsiveness of GDP as a function of the subsidy, which is

visualized in Figure 1.87 The nonlinearity essentially arises from the fact that the firms’ reactions depend

on their quantity and price, as well as their production elasticities, each of which in turn depends on the

value of the underlying subsidy. See also Remark 5.1 (ii).

85In this analysis, I set v̄ = 10.
86For the case of monopolistic competition, the estimates are different qualitatively as well.
87Figure 1 compares the values of the total derivatives of Y with respect to semiconductor subsidy τn over the course of

the policy reform from τ0
n to τ1

n. Note that dY
ds

=
∑N
i=1

dYi(s)
ds

, and thus the area surrounded by the blue/red line and the
broken line indicating zero represents the policy effect of interest (24).
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Lastly, it is clear in Figure 1 (b) that there is a steady upward trend from 15.60% to 16.00%. Thus,

it might appear tempting to argue that further increasing the subsidy by, say, 2% will eventually revert

the policy effect to being positive. However, my identification result builds on Assumption 5.2, which

restricts an alternative policy to stay within the observed support of the policy variable. Establishing

the identification for a policy that sends the policy variable to outside the observed support in general

requires additional invariance conditions, as studied by Canen and Song (2022).

Table 2: The estimates of the object of interest

(billion U.S. dollars) Monopolistic competition Oligopolistic competition

Estimates based on (30a) -0.71 -1.34
Estimates based on (30b) 1.76 -2.93

Note: This table compares the estimates for the object of interest (24) based on the benchmark

and my method. The estimates are measured in billions of U.S. dollars.

Figure 1: The total derivative of Y with respect to τn

(a) Monopolistic Competition (b) Oligopolistic Competition

Note: This figure illustrates the estimates of the total derivative of (economy-wide) GDP with respect to the semiconductor

subsidy between τn = 14.94% and 16.00%. Panel (a) shows the result for the case of monopolistic competition and panel (b)

for the case of oligopolistic competition. The red line represents the estimates based on the nonlinear approximation (30a).

The blue line indicates the estimates based on the linear approximation (30b). The broken line stands for zero. Hence, the

part surrounded by the broken line and those (solid and dotted) red lines above it measures the total increment of GDP over

the course of the policy change, while the other part gives the total decrement in GDP. The difference between these two

areas delivers the estimated value of the policy effect according to (30a). Similarly, the area surrounded by the broken line

and blue line gives the estimated value of the policy effect according to (30b).
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6.2 Mechanism

To study the mechanism behind the results obtained in Section 6.1, I investigate the determination of

the integrand of (27) (the responsiveness of sectoral GDP).

6.2.1 Responsiveness of sectoral GDP

Design. I anchor my interpretation of the responsiveness of sectoral GDP around (28):

dYi(s)

ds

∣∣∣∣
s=τn

=

Ni∑
k=1

dp∗ik
dτn

q∗ik︸ ︷︷ ︸
price effect

+

Ni∑
k=1

p∗ik
dq∗ik
dτn︸ ︷︷ ︸

quantity effect

−
( Ni∑
k=1

N∑
j=1

dP ∗j
dτn

m∗ik,j︸ ︷︷ ︸
wealth effect

+

Ni∑
k=1

N∑
j=1

P ∗j
dm∗ik,j
dτn︸ ︷︷ ︸

switching effect

)
, (31)

which states that the marginal effect of a policy change consists of changes in revenue and expenditure

on material input net of subsidies. The former is broken down into price and quantity effects. When a

firm produces more of its output, the price effect dictates the loss due to the increased supply in light

of the law of demand. Under oligopolistic competition, this downward pressure depends not only on the

increase in a firm’s own quantity but also on a change in every other firm’s output quantity through the

cross-price elasticities of demand. The quantity effects are proportional to the given level of the firm’s

output price. The other component of (31) can similarly be decomposed into two parts: the wealth and

switching effects. The wealth effects are changes in a firm’s “budget” as a result of changes in sectoral

price indices. The switching effects are changes in the sectoral composition of the firm’s input purchase,

holding the price level constant.

Result. Table 3 reports the rankings of the top and bottom five industries in terms of gains and losses

on sectoral GDP for monopolistic and oligopolistic competition. From this table, it can be seen that

the sectoral distributional consequence — which sector wins and which sectors lose — depends on the

tension between the two types of price and quantity effects defined in (31). To build intuition about this,

suppose that all firms in a sector increase their production of output (positive quantity effects). By the

law of demand, this lowers the output prices (negative price effects). These two effects induce another

set of price and quantity effects. On the one hand, to produce more of their goods, the firms increase the

purchase of input goods (negative switching effects).88 On the other hand, since their products are now

88Since the switching and wealth effects are multiplied by minus, as shown in (31), when they are summed into the total
effect, I refer to its sign (positive or negative) by the gross of this minus sign.
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sold at lower prices and used as input by other sectors according to the production network, they expect

to see a reduction in the prices of other sectoral goods, which in turn lowers their input costs (positive

wealth effect). The total effect depends on which of these price and quantity effects are dominant.

Take the computer and electronic products industry as an example. Under monopolistic competition,

the positive components (the quantity and wealth effects) jointly dominate the negative parts (the price

and switching effects). When the markets are oligopolistic, the positive quantity effects are almost

exactly offset by the negative price effects, while the positive wealth effects are surpassed by the negative

switching effects, leaving the firms with a higher input cost. Loosely speaking, the input costs do not fall

as much as the semiconductor firms have expected. This echoes the insight gleaned in Section 2.3 that

the network compounds the firms’ strategic complementarities, amplifying or buffering the policy effects

across industries.

Next, I explore the determination of this tension with a particular focus on the comovements between

firm- and sector-level variables.

6.2.2 Macro and Micro Complementarities

Here, I derive three “reduced-form” equations of comparative statics that span the middle layer of my

identification procedure. These three equations jointly envision the process by which the within-sector

overall strategic complementarities (micro complementarities) are compounded through the production

network into between-sector complementarities (macro complementarities).89 It is these two comple-

mentarities that dictate the comovement of sectoral price and material cost indices. The bottom line is

that, relative to the monopolistic benchmark, both micro and macro complementarities in the case of

oligopolistic competition can be amplified or weakened due to firms’ strategic complementarities. A fuller

account can be found in Appendix C.3.

Key equations. First, the total differentiation of the firm’s profit-maximization problem yields

dq∗ik
dτn

= λ̄Mik
dPMi

∗

dτn
+ λ̄Lik

dW ∗

dτn
, (32)

where λ̄Mik and λ̄Lik are indices measuring the extent to which the market competition is affected by the

change in firm k’s quantity.

89These terminologies are borrowed from Klenow and Willis (2016) and Alvarez et al. (2023).
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Table 3: Responsiveness of Sectoral GDP (in Billions of U.S. Dollars)

(a) Monopolistic Competition (with the Production Network)

Industry Total Effects Effects on Revenue Effects on Material Cost

p.effect q.effect w.effect s.effect

Wholesale trade 2679.40 3129.08 -14997.04 2900.08 -17447.44
Computer and electronic products 196.76 -538.04 1098.37 -152.90 516.47
Hospitals and nursing 87.26 -13.15 77.68 31.92 -54.64
Food services and drinking places 79.37 -27.08 117.76 19.42 -8.11

...
Broadcasting and telecommunications -369.96 1079.64 -1948.26 597.88 -1096.54
Petroleum and coal products -551.58 740.38 -462.15 2091.71 -1261.90
Motor vehicles, bodies and trailers, and parts -720.69 626.73 -2963.23 687.48 -2303.29
Retail trade -725.91 2993.65 -8432.83 2989.46 -7702.73

Total 150.74

(b) Oligopolistic Competition (with the Production Network)

Industry Total Effects Effects on Revenue Effects on Material Cost

p.effect q.effect w.effect s.effect

Accommodation 0.73 -2.15 3.38 -1.28 1.77
Wood products 0.59 0.83 -1.26 -0.47 -0.56
Plastics, rubber and mineral products 0.47 -6.35 6.26 -4.89 4.32
Railroad and truck transportation 0.44 -1.29 1.53 -1.35 1.15

...
Wholesale trade -14.28 -70.76 71.60 -78.28 93.40
Miscellaneous manufacturing -44.50 43.98 -125.57 0.66 -37.75
Petroleum and coal products -58.79 -186.41 187.48 -104.18 164.04
Computer and electronic products -94.70 -251.29 252.58 -59.75 155.74

Total -250.23

Note: This table reports the estimates for the top and bottom four firms in terms of the total effects (i.e., the change in

sectoral GDP in the order of a million dollars). Panel (a) shows the results for monopolistic competition, while panel (b)

illustrates the estimates for oligopolistic competition. Since the network spillover effects are by construction absent in mo-

nopolistic competition, results for other industries are omitted in panel (a). In each of the panels, the total effects are broken

down into the effects on revenue and material input costs. They are further decomposed into four effects according to (31):

namely, p.effect stands for the price effects, q.effect the quantity effects, w.effect the wealth effects, and s.effect the switch-

ing effects. Notice that the total effects are given by the effects on revenue minus the effects on material costs (see (31)).

The ellipsis points (vertical three dots) stands for other 30 industries omitted. Hence summing up the total effects of the

displayed eight industries do not equal to the entire total effects.
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Second, totally differentiating the firm’s profit-maximization and cost-minimization problems delivers

dP ∗i
dτn

= λ̄Mi·
dPMi

∗

dτn
+ λ̄Li·

dW ∗

dτn
, (33)

where λ̄Mi· and λ̄Li· are weighted sums of λ̄Mik ’s and λ̄Lik’s in sector i, respectively. Since each of these

coefficients involves the derivatives of marginal revenue functions not only with respect to firms own

choices but also with respect to competitors’ choices (i.e., strategic complementarities), it can be conceived

as a measure of the sector’s “overall” strategic complementarity. I call λ̄Mi· and λ̄Li· sector i’s micro

complementarities with respect to material and labor input, respectively.90

Third, from the cost-minimization problem for the material input aggregator, I have

dPMi
∗

dτn
= −hMi,n

PMn
∗

1− τn
+ hLi

dW ∗

dτn
, (34)

where hMi,n indicates the (i, n) entry of (I − Γ)−1, with Γ :=
[
γi,j

PMi
∗

P ∗j
λ̄Mj·
]N
i,j=1

. Note that the array

of the output elasticities [γi,j ]
N
i,j=1 reflects the input-output structure Ω (Fact B.5). Hence, the matrix

(I − Γ)−1 can be considered a version of the Leontief inverse matrix that compounds the sectors’ micro

complementarities along the network. In (34), hMi,n captures the comovement pattern of the sectoral cost

index
dPMi

∗

dτn
and the direct effect of the subsidy −PMn

∗

1−τn . I call hMi,n sector i’s macro complementarity to the

policy shock on sector n. Similarly, hLi is referred to as sector i’s macro complementarity to the change

in the wage rate.

Note that dW ∗

dτn
can be written in terms of firm-level production and inverse demand functions of all

firms across sectors. Conditional on the bottom layer problem, these three equations, (32), (33), and

(34) can be viewed as “reduced-form” equations. Reading these in reverse order, I can proceed as if the

material cost indices were determined first, followed by the adjustments of the sectoral price indices and

firm-level output quantities. Moreover, combining equations (33) and (34), the coefficient of pass-through

from material cost to price index can be expressed in terms of the macro and micro complementarities.

Notice, though, that the reduced-form coefficients in the above three equations are already composites of

firm-level production and inverse demand functions and thus do not allow for behavioral interpretations;

rather, they only represent comovement patterns of the comparative statics.

90Since these measures involve the derivatives of marginal revenue functions with respect to firms own choices, they do
not vanish even when the market is monopolistically competitive.
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Result. Table 4 reports the responses of sectoral price indices and material cost indices, along with the

coefficients indicating macro and micro complementarities for the top and bottom four industries listed

in Table 3. In this empirical analysis, I obtain −PMn
∗

1−τn = −827.92. Also, dW ∗

dτn
= −86.34 for the case of

monopolistic competition, and dW ∗

dτn
= −0.77 for the case of oligopolistic competition.

The material cost of the semiconductor industry decreases in both monopolistic and oligopolistic

competition. But the magnitudes are different because the sector’s macro complementarities (hLi and hMi,n)

vary substantially across these two types of markets. This reflects the fact that macro complementarity

compounds all sectors’ micro complementarities, which involve the sector’s strategic complementarities.

This appears more starkly in the wholesale trade industry, whose material cost index in the oligopolistic

case moves in the opposite direction of that in the monopolistic one.

Disciplined by (33), Table 4 also displays how much the sectoral price indices change. For the computer

and electronic products industry, the magnitudes of the micro complementarities are more nuanced in

oligopolistic competition relative to in monopolistic competition, the pass-throughs from material input

cost and wage being less transient. This is in concordance with the price effects in Table 3. Moreover,

since the most important source industry for this industry is itself, this price change is directly translated

into the positive wealth effects shown in Table 3.91

Associated with changes in the sectoral price indices is the firm’s adjustment of output and input

quantities. Take the wholesale trade industry as an example. Figure 2 illustrates the changes in the firm-

level output quantities and prices in this industry for both monopolistic and oligopolistic competition.

While most of the monopolistic firms respond by dramatically reducing their output quantities, the

responses of the oligopolistic firms are much more nuanced, with many firms increasing their production

(Figure 2 (a)).92 This is accompanied by firm-level prices moving in the opposite direction (Figure 2 (b)).

Note that these are consistent with the price and quantity effects of this industry shown in Table 3. It

should also be noted that the correlation coefficient between firm-level markups and the changes in firms’

output quantities is 0.61 for the monopolistic market and -0.75 for the oligopolistic case, which implies

that the quantity adjustments tend to be led by the leading firms in both cases. In line with the quantity

adjustment, many of the monopolistic firms reduce their input purchases from many sectors, while most

of the oligopolistic firms increase their purchases of a wide range of intermediate goods (Figure 3).93 This

91This observation is true for many other industries too. See Figure 4.
92When the market is monopolistic, 75 firms out of 76 decrease their output quantities; when the market is oligopolistic,

70 firms out of 76 increase their output quantities.
93To make this mechanism transparent, I keep track of five firms with substantial adjustments (i.e., k ∈ {3, 21, 34, 56, 68})
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Table 4: The Changes in Sectoral Price Indices and Material Cost Indices

(a) Monopolistic Competition (with the Production Network)

Industry (i) hLi hMi,n
dPMi

∗

dτn
λ̄Li· λ̄Mi·

dPi
∗

dτn

Wholesale trade -65.37 -1.11 6567.20 1.71 0.63 4013.97
Computer and electronic products -13.19 4.12 -2268.93 1.51 0.24 -667.05
Hospitals and nursing -29.05 -0.97 3312.98 15.19 0.31 -285.32
Food services and drinking places -22.46 -0.63 2460.67 7.34 0.11 -360.25

...
Broadcasting and telecommunications -52.00 0.42 4140.84 1.12 0.16 567.66
Petroleum and coal products -5.51 0.00 471.62 -0.07 0.05 28.53
Motor vehicles, bodies and trailers, and parts -12.35 -0.60 1560.55 3.67 0.60 618.57
Retail trade -69.60 -1.46 7218.48 2.63 0.22 1372.51

(b) Oligopolistic Competition (with the Production Network)

Industry (i) hLi hMi,n
dPMi

∗

dτn
λ̄Li· λ̄Mi·

dPi
∗

dτn

Accommodation 13.13 0.12 -110.80 -1.70 0.11 -10.58
Wood products 3.95 0.06 -50.19 -1.55 -0.21 11.59
Plastics, rubber and mineral products 12.50 0.16 -140.44 1.05 0.06 -9.21
Railroad and truck transportation 14.48 0.12 -112.13 0.82 0.07 -8.94

...
Wholesale trade 15.44 0.20 -177.26 0.30 0.11 -19.16
Miscellaneous manufacturing -30.04 -0.05 60.67 119.47 4.86 203.32
Petroleum and coal products 2.44 0.03 -23.49 0.05 0.49 -11.57
Computer and electronic products 13.34 1.67 -1391.01 0.68 0.11 -153.40

Note: This table displays the estimates for the elements of (33) and (34) for those industries listed in Table

3. Panel (a) shows the results for monopolistic competition and panel (b) for oligopolistic competition.
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corresponds to the switching effects in Table 3.

All in all, I find that the sectors’ macro and micro complementarities under oligopolistic competition

differ substantially from those under monopolistic competition. In 23 out of 38 industries, these differences

jointly manifest themselves through the difference in the sign of the marginal change in the sectoral price

index, which is associated with that of firms’ equilibrium responses. This result again points to the

empirical relevance of accounting for firms’ strategic interactions in credibly predicting firms’ responses

and hence the policy effect.

Figure 2: The Changes in Firm’s Output Quantities and Prices (Wholesale trade)

(a) Quantity (b) Price

Note: This figure shows horizontal bar plots representing the changes in firms’ output quantities in wholesale trade and com-

pares the case of monopoly (blue) to that of oligopoly (orange). To facilitate the discussion, indices for five firms are explicitly

marked (e.g., k ∈ {3, 21, 34, 56, 68}). Note that firms’ output quantities are identified (and thus estimated) only up to scale.

7 Conclusions

Industrial policies have been and will continue to be an important policy tool for policymakers to achieve a

range of policy goals. This paper studies the effect of an industrial policy on an aggregate outcome in the

presence of strategic interactions and production networks. To this end, I develop a general equilibrium

multisector model of heterogeneous oligopolistic firms with a production network. For the identification,

I develop a new, multi-layered identification procedure that first deconstructs the policy parameter into

sectoral aggregate variables as well as firm-level variables — firm-level sufficient statistics — and recovers

the latter by using the control function approach of the industrial organization literature before finally

throughout Figures 2 and 3.
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Figure 3: The Changes in Demand for Sectoral Intermediate Goods (Wholesale trade)

(a) Monopolistic Competition (b) Oligopolistic Competition

Note: This figure shows heatmaps indicating changes in demand for sectoral intermediate goods from firms in wholesale trade.

Panel (a) shows the results for monopolistic competition, while the estimates for oligopolistic competition are depicted in

panel (b). In both panels, the horizontal axis denotes industry, and the vertical axis represents individual firms. To facilitate

the discussion, a firm’s index is explicitly marked for five firms (e.g., k ∈ {3, 21, 34, 56, 68}). White cells represent decreases

in demand for sectoral goods. Gray and black cells stand for mild (0 ∼ 1.0× 107) and large (1.0× 107 ∼) increases in demand

for sectoral goods, respectively. These are measured in the same unit as the final consumption good.

reconstructing the original policy parameter. To accommodate the firm’s strategic interactions, I restrict

the classes of the firm’s inverse demand and production function and the path through which the other

firm’s productivities enter the firm’s production decision. I show that these assumptions are general

enough to encompass many specifications that are commonly used in the macroeconomics literature.

Given that all firm-level responses — the finest ingredient of the model — are identified, my method

can be used to study a variety of policy parameters such as GDP, consumption, intersectoral trade flow,

and sectoral distributional outcomes. Moreover, since my approach is constructive, a nonparametric

estimator for the policy effect can thus be obtained by reading this procedure in reverse without adapting

any external information (e.g., parameter estimates from the preceding research).

My estimates, based on U.S. firm-level data, suggest that accounting for the firm’s strategic interac-

tions doubles the magnitude of the policy effect of an additional subsidy on the semiconductor industry

relative to the case where firms are monopolistic. This is because when strategic interactions are present,

the production network compounds not only firm-level markup responses with respect to the firm’s own

choices but also with respect to competitors’ choices, whereas the latter is absent in monopolistic compe-

tition. This additional wedge in network spillovers manifests itself as the differences in the comovements
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of sectoral price indices and material cost indices, or pass-through coefficients.

Interpreting the results displayed in this paper requires some care because they are susceptible to

errors to the extent that the Compustat data are incomplete and non-representative and incur substantial

imputation.94 Besides the data limitation, there are three directions for future work. First, this paper

abstracts away from the firm’s entry and exit problem over the course of policy reform, restricting the

scope of analysis to short-run policy effects. Accommodating a long-run perspective inserts an additional

layer into my framework, namely, the free-entry condition. Deriving the comparative statics, however,

is nontrivial in my setup as the number of firms is finite, and thus the standard notion of derivatives

cannot be well-defined. Second, the identification analysis of this paper assumes that the economy

features a single equilibrium, the same equilibrium is played over the course of a policy reform, and

the policy reform is restricted to be within the historically observed support. These limitations can

be simultaneously addressed at the cost of additional assumptions concerning the equilibrium selection

probability, as studied in Canen and Song (2022). Third, my model is static and thus silent about the

policy implications of capital accumulation, which is usually at the center of policy debate. An extension

to a dynamic environment requires an explicit consideration of not only the firm’s own future choices

but also competitors’ future choices. This convoluted forward-looking nature opens up another source of

multiplicity of equilibria.

94See Baqaee and Farhi (2020) and Covarrubias et al. (2020).
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Antràs, P. and D. Chor (2019). On the measurement of upstreamness and downstreamness in global value
chains. In L. Y. Ing and M. Yu (Eds.), World Trade Evolution: Growth, Productivity and Employment,
Book section 5, pp. 126–194. Taylor & Francis Group.
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A Overview

A.1 Setup

Consider an economy consisting of two industries, indexed by i = 1, 2. Each industry’s sales (measured

in appropriate monetary unit) is denoted by xi for i ∈ {1, 2}. When there are no market distortions, each

industry’s sales is equivalent to the industry’s expenditure, and it derives from final consumption (F ) by

consumers and intermediate use by all firms. The expenditure for final consumption is indicated by yi.

The share of sector j’s good in sector i’s expenditure represented by ωi,j for i, j ∈ {1, 2}. I use an

array Ω := [ωi,j ]i,j∈{1,2,3} to keep track of the input-output structure. For instance, the industry 1’s sales

consists of ω1,1 of the industry 1’s expenditure (x1), ω2,1 of the industry 2’s expenditure (x2), and the final

consumption (y1): x1 = ω1,1x1+ω2,1x2+y1 (see Table ?? (a)). Stacking this expression for all sectors into

a matrix form, the sectoral expenditure, sales and final consumption satisfy the following relationship:

X = ΩX + Y , where X and Y are vectors stacking xi’s and yi’s, respectively, i.e., X := [x1 x2]′ and

Y := [y1 y2]′.

Next, I impose a regularity condition.

Assumption A.1. (I − Ω)−1 exists.

This assumption is always satisfied (Carvalho and Tahbaz-Salehi 2019). Under Assumption A.1, I obtain

X = Y︸︷︷︸
final demand

+ Ω(I − Ω)−1Y︸ ︷︷ ︸
intermediate demand

.95 (35)

This expression decomposes the industries’ sales into the demand of goods for final consumption and

for intermediate use, with the latter proportional to the final consumption. Note that Assumption A.1

implies:

(I − Ω)−1 =

∞∑
n=0

Ωn. (36)

It can be shown that the (i, j) entry of the right-hand side is

ωi,j +
∑

k∈{1,2,3}

ωi,kωk,j +
∑

k∈{1,2,3}

∑
l∈{1,2,3}

ωi,kωk,lωk,j + . . . .

This dictates how important industry j is for industry i as a direct and indirect input supplier (Carvalho

and Tahbaz-Salehi 2019).

Now, I introduce market distortions in this accounting framework. I assume that for each industry

i ∈ {1, 2}, the industry’s sales (xi) is different from the expenditure (x̃i) by the rate of µi: i.e., xi = µix̃i.

I consider the case of µi > 0, in which µi is interpreted as a sector-level markup. Let M be a 2 × 2

diagonal matrix with typical diagonal element being the sectoral markup and zero otherwise. Since it is

assumed that the markup is the sole source of sector’s value-added, I can write the sector i’s value added

95See Appendix A.
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V Ai as V Ai = (1 − 1
µi

)xi, i.e., the value added equals the sector’s profits. In a matrix form, it can can

be expressed as

V A = (I −M−1)X. (37)

To derive a version of (35), I need to strengthen Assumption A.1.

Assumption A.2. (I − ΩM−1)−1 exists.

Under Assumption A.2, it holds that

X = Y︸︷︷︸
final demand

+ ΩM−1(I − ΩM−1)−1Y︸ ︷︷ ︸
intermediate demand

, (38)

where ΩM−1 is interpreted as a markup-augmented input-output linkage (Table ?? (b)).

A.2 Macro Complementarities

In deriving (3), I utilize the following fact.

Fact A.1. (i) For a square matrix B and for any integer n ≥ 1, dBn =
∑n−1

l=0 B
l(dB)Bn−l−1. (ii) For

a square matrix B, dB−1 = −B−1(dB)B−1.

Proposition A.1.

d(V A)

dτ1
= −dM

−1

dτ1
X + (I −M−1)

dX

dτ1
,

where

dM−1

dτ1
= −M−1dM

dτ1
M−1

dX

dτ1
= −

∞∑
n=1

n−1∑
l=0

(ΩM−1)l+1dM

dτ1
M−1(ΩM−1)n−l−1Y + (I − ΩM−1)

dY

dτ1
.

Proof. Applying Chain rule to (37),

d(V A)

dτ1
= −dM

−1

dτ1
X + (I −M−1)

dX

dτ1
.

In view of Fact A.1 (ii), it follows

dM−1

dτ1
= −M−1dM

dτ1
M−1

Next, observe that (38) can be written as X =
∑∞

n=0(ΩM−1)nY , so that

dX

dτ1
=

{
d

dτ1

∞∑
n=0

(ΩM−1)n
}
Y +

{ ∞∑
n=0

(ΩM−1)n
}
dY

dτ1
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For the first term, I invoke Fact A.1 (i) to obtain

{
d

dτ1

∞∑
n=0

(ΩM−1)n
}
Y = −

∞∑
n=1

n−1∑
l=0

(ΩM−1)l+1dM

dτ1
M−1(ΩM−1)n−1l−1Y.

The second term can be written as{ ∞∑
n=0

(ΩM−1)n
}
dY

dτ1
= (I − ΩM−1)

dY

dτ1
.

This completes the proof.

A.3 Micro Complementarities

In order to obtain a clear view about the endogenous responses of markup elasticities, I now microfound

the determination of industry-level markups using an oligopoly model of Melitz and Ottaviano (2008).

Consider the same setup as in Section 2.3. That is, each industry i is populated by two firms k ∈ {1, 2}
(i.e., a duopoly), each producing a single differentiated product under a constant marginal cost mcik.

The firms engage in a Cournot competition with complete information. Firms’ products are aggregated

into a single homogenous sectoral good Qi according to a quadratic production function:

Qi = qi0 + a(qi1 + qi2)− b

2
(q2
i1 + q2

i2)− c

2
(qi1 + qi2)2,

where qi0 is an outside good, qik is meant to be the demand of firm k’s product for k ∈ {1, 2}, and a,

b and c are demand parameters. These demand parameters are all assumed to be positive. Assuming

positive demand for each product, the inverse demand function faced by firm k ∈ {1, 2} is given by

pik = a− bqik − c(qi1 + qi2).

Proposition A.2. The Nash-Cournot quantities are

q∗i1 =
a(2b+ c)− (2b+ 3c)mci1 + c(mci1 +mci2)

(2b+ c)(2b+ 3c)

q∗i2 =
a(2b+ c)− (2b+ 3c)mci2 + c(mci1 +mci2)

(2b+ c)(2b+ 3c)
.

Proof. Under the setup described above, the best response of firm k satisfies

a− 2(b+ c)qik − cqik′ = mcik.

By symmetry, the best response of firm k′ 6= k is given by

a− cqik − 2(b+ c)qik′ = mcik′ .
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From these, it follows

−(2b+ c)(2b+ 3c)qik + a(2b+ c) = (2b+ 3c)mcik − c(mcik +mcik′).

Since the demand parameters are assumed to be positive, it obtains

qik =
a(2b+ c)− (2b+ 3c)mcik + c(mcik +mcik′)

(2b+ c)(2b+ 3c)
.

Again by symmetry, an analogous expression holds for firm k′, completing the proof.

A.4 Idea of Identification Strategy

Consider the same setup as Section 2.4. That is, the firm-level production in sector i is given by

qik = zikfi(mik,1,mik,2), where fi(·) is constant returns to scale with zik and mik,j representing firm

k’s productivity and input demand for sector j’s good, respectively. The firm k’s marginal cost takes the

form of mcik = mciz
−1
ik where mci is the marginal cost common to the both firms.

I assume that the observations (mik,1,mik,2) in the data are generated from an equilibrium. This

requires the following regularity condition.

Assumption A.3. The demand parameters a, b and c, and firms’ marginal costs mci1 and mci2 are

such that the firm’s input decisions are well defined.

Under this assumption, we can derive the expressions referred to in Section 2.4.

Proposition A.3. (i) There exists sector-specific constants Ki and H̄i such that

q∗ik = Kiz
−1
ik + H̄i.

(ii) Under Assumption A.3, there exits a function Mi such that

zik =Mi(mik,1,mik,2; H̄i).

Proof. (i) From Proposition A.2,

qik = − 2b+ 3c

(2b+ c)(2b+ 3c)
mciz

−1
ik +

a(2b+ c) + c(mciz
−1
i1 +mciz

−1
i2 )

(2b+ c)(2b+ 3c)

Thus, we can write q∗ik = Kiz
−1
ik +Hi(zi1, zi2), where

Ki := − 2b+ 3c

(2b+ c)(2b+ 3c)
mci

and

Hi(zi1, zi2) :=
a(2b+ c) + c(mciz

−1
i1 +mciz

−1
i2 )

(2b+ c)(2b+ 3c)
.
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Since the information structure is complete, the values of firms productivities are common knowledge

when firms choose inputs. Hence, the value of Hi(zi1, zi2) is known and given by

H̄i = Hi(zi1, zi2).

(ii) Taking part (i) of this proposition as given, the firm k’s input decision is constrained by the

following production possibility frontier:

zikfi(mik,1,mik,2) = q∗ik = Kiz
−1
ik + H̄i,

which leads to

fi(mik,1,mik,2)z2
ik − H̄izik −Ki = 0. (39)

Assumption A.3 implies that `ik and mik are chosen in such a way that (39) is satisfied for the firm’s

productivity zik > 0. Thus, in light of the quadratic formula,

zik =
H̄i ±

√
H̄2
i + 4Kifi(mik,1,mik,2)

2fi(mik,1,mik,2)
. (40)

Hence, there exists a function Mi such that zik =Mi(mik,1,mik,2; H̄i).

Remark A.1. Although (39), in general, gives two distinct positive values for zik, the function Mi is

not required to be unique because this paper is not concerned about the identification of zik per se.96

B Detail of Data

This section provides the detailed account of the data source used in my paper, and how I construct the

empirical counterparts of the variables.

B.1 Aggregate-Level Data

Data on wage-related concepts are obtained from the U.S. Bureau of Labor Statistics (BLS) through the

Federal Reserve Bank of St. Louis (FRED) at annual frequency. In my model, labor is assumed to be

frictionlessly mobile across sectors so that the wage W is common for all sectors. Thus I use “average

hourly earnings of all employees, total private” as the empirical counterpart of my wage. In addition, I

also obtain the measures of total number of employees (All Employees, Total Private) and of total hours

worked per year (Hours of Wage and Salary Workers on Nonfarm Payrolls), from which I can compute

the average hours worked per employee per year (see Appendix B.3). Note that both the total number of

employees and total hours worked exclude farms mainly because of the peculiarities of the structure of

the agricultural industry and characteristics of its workers: e.g., various definitions of agriculture, farms,

96In (39), let Ki(zik) := fi(`ik,mik)z2
ik − H̄izik −Ki. Then, Ki(0) = −Ki > 0. Since moreover fi(`ik,mik) > 0 for all

(ellik,mik), and zik > 0, it thus has to be that (40) gives two distinct positive values for zik > 0.

53



famers and farmworkers; considerable seasonal fluctuation in the employment (Daberkow and Whitener

1986). In this sense, the corresponding data for farms industry in my dataset should be considered being

inputed by the average of other sectors.

Sectoral price index data is available at the Bureau of Economic Analysis (BEA). I use U.Chain-Type

Price Indexes for Gross Output by Industry — Detail Level (A) as the data.

These are summarized in the following fact.

Fact B.1 (Wage & Sectional Price Index). The wage W ∗ and sectoral price indices {P ∗i }Ni=1 are directly

observed in the data.

B.2 Sector-Level Data: Industry Economic Accounts (IEA)

Our analysis involves two types of sector-level data: namely, the input-output table and sector-input-

specific tax/subsidy, both of which come from the input-output accounts data of the Bureau of Economic

Analysis (BEA). In line with the global economic accounting standards, such as the System of National

Accounts 2008 (UN 2008), the BEA input-output table consists in two tables: the use and supply table.

The use table shows the uses of commodities (goods and services) by industries as intermediate inputs

and by final users, with the columns indicating the industries and final users and the rows representing

commodities. This table reports three pieces of information: intermediate inputs, final demand and value

added. Each cell in the intermediate input section records the amount of a commodity purchased by each

industry as an intermediate input, valued at producer’ or purchasers’ prices.97 The final demand section

accounts for expenditure-side components of GDP. The value-added part bridges the difference between

an industry’s total output and the its total cost for intermediate inputs. I will further elaborate on this

part in the upcoming section (Appendix B.2.2).

The supply table shows total supply of commodities by industries, with the columns indicating the

industries and the rows representing commodities. This table comprises domestic output and imports.

Each cell of the domestic output section presents the total amount of each commodity supplied domes-

tically by each industry, valued at the basic prices. The import section records the total amount of each

commodity imported from foreign countries, valued at the importers’ customs frontier price (i.e., the c.i.f.

valuation).98

Segmentation. My analysis is based on the BEA’s industry classification at the summary level, which

is roughly equivalent to the three-digit NAICS (North American Industry Classification System). I make

two modifications in conjunction with the availability of Compustat data . First, I omit several industries

97Typically, the IEA is valued at either of the producers’, basic, or purchasers’ prices. The producers’ prices are the total
amount of monetary units received from the purchasers for a unit of a good and service that is sold. The basic prices mean
the total amount retained by the producer for a unit of a good and service. This price plays a pivotal role in the producer’s
decision making about production and sales. The purchasers’ prices refer to the total amount payed by the purchasers for
a unit of a good and service that they purchase. This is the key for the purchasers to make their purchasing decisions. By
definition, the basic prices are equal to the producers’ prices minus taxes payable for a unit of a good and service plus any
subsidy receivable for a unit of a good and service; and the purchasers’ prices are equivalent to the sum of the producers’
prices and any wholesale, retail or transportation markups charged by intermediaries between producers and purchasers.
See BEA (2009) and Young et al. (2015) for the detail.

98The importers’ customs frontier price is calculated as the cost of the product at foreign port value plus insurance and
freight charges to move the product to the domestic port. See Young et al. (2015) for the detail.
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and products from my analysis. Following Bigio and La’O (2020), I exclude finance, insurance, real

estate, rental and leasing (FIRE) sectors from my analysis.In the BEA’s input-output table, these sectors

are indexed by 521CI, 523, 524, 525, HS, ORE, and 532RL. I also follow Baqaee and Farhi (2020) in

dropping two product categories: namely, Scrap, used and secondhand goods and Noncomparable imports

and rest-of-the-world adjustment. These are indexed by “Used” and “Others,” respectively. I again follow

Baqaee and Farhi (2020) in removing the government sectors, which are reported with the indices 81,

GFGD, GFGN, GFE, GSLG, and GSLE. Second, drawing on Gutiérrez and Philippon (2017), I merge

some of the BEA’s industries. This manipulation makes sure that each industry has a good coverage of

Compustat firms (Gutiérrez and Philippon 2017). In my context, this also helps us focus on modestly

imperfectly competitive markets. After all, I am left with 38 industries (Table 5).

Table 5: Mapping of BEA Industry Codes to Segments

BEA code Industry Mapped segment

111CA Farms Farms, forestry, fishing, and related activities

113FF Forestry, fishing, and related activities Farms, forestry, fishing, and related activities

211 Oil and gas extraction Oil and gas extraction

212 Mining, except oil and gas Mining, except oil and gas

213 Support activities for mining Support activities for mining

22 Utilities Utilities

23 Construction Construction

311FT Food and beverage and tobacco products Food and beverage and tobacco products

313TT Textile mills and textile product mills Textile and apparel products

315AL Apparel and leather and allied products Textile and apparel products

321 Wood products Wood products

322 Paper products Paper products, printing, and related activities

323 Printing and related support activities Paper products, printing, and related activities

324 Petroleum and coal products Petroleum and coal products

325 Chemical products Chemical products

326 Plastics and rubber products Plastics, rubber and mineral products

327 Nonmetallic mineral products Plastics, rubber and mineral products

331 Primary metals Primary metals

332 Fabricated metal products Fabricated metal products

333 Machinery Machinery

334 Computer and electronic products Computer and electronic products

335 Electrical equipment, appliances, and components Electrical equipment, appliances, and components

3361MV Motor vehicles, bodies and trailers, and parts Motor vehicles, bodies and trailers, and parts

33640T Other transportation equipment Motor vehicles, bodies and trailers, and parts

337 Furniture and related products Furniture and related products

339 Miscellaneous manufacturing Miscellaneous manufacturing

42 Wholesale trade Wholesale trade

441 Motor vehicle and parts dealers Retail trade

445 Food and beverage stores Retail trade

452 General merchandise stores Retail trade

4A0 Other retail Retail trade

481 Air transportation Air transportation

482 Rail transportation Railroad and truck transportation

483 Water transportation Other transportation

484 Truck transportation Railroad and truck transportation

485 Transit and ground passenger transportation Other transportation

486 Pipeline transportation Other transportation

4870S Other transportation and support activities Other transportation
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BEA code Industry Mapped segment

493 Warehousing and storage Other transportation

511 Publishing industries, except internet (includes software) Publishing industries

512 Motion picture and sound recording industries Motion picture and sound recording industries

513 Broadcasting and telecommunications Broadcasting and telecommunications

514 Data processing, internet publishing, and other information services Information and data processing services

521CI Federal Reserve banks, credit intermediation, and related activities Omitted

523 Securities, commodity contracts, and investments Omitted

524 Insurance carriers and related activities Omitted

525 Funds, trusts, and other financial vehicles Omitted

HS Housing Omitted

ORE Other real estate Omitted

532RL Rental and leasing services and lessors of intangible assets Omitted

5411 Legal services Professional services

54120P Miscellaneous professional, scientific, and technical services Professional services

5415 Computer systems design and related services Professional services

55 Management of companies and enterprises Omitted

561 Administrative and support services Administrative and waste management

562 Waste management and remediation services Administrative and waste management

61 Educational services Educational services

621 Ambulatory health care services Health care services

622 Hospitals Hospitals and nursing

623 Nursing and residential care facilities Hospitals and nursing

624 Social assistance Health care services

711AS Performing arts, spectator sports, museums, and related activities Arts

713 Amusements, gambling, and recreation industries Arts

721 Accommodation Accommodation

722 Food services and drinking places Food services and drinking places

81 Other services, except government Omitted

GFGD Federal general government (defense) Omitted

GFGN Federal general government (nondefense) Omitted

GFE Federal government enterprises Omitted

GSLG State and local general government Omitted

GSLE State and local government enterprises Omitted

Used Scrap, used and secondhand goods Omitted

Other Noncomparable imports and rest-of-the-world adjustment Omitted

Note: This table shows the correspondence between the BEA’s industry classification (at summary level) and my segmenta-

tion, which draws heavily on Gutiérrez and Philippon (2017). The first two columns (“BEA code” and “Industry”) list the

BEA codes and the corresponding industries as used in the BEA’s input-output table. The third column (“Mapped segment”)

indicates the names of the segments I define.

B.2.1 Transformation to Symmetric Input-Output Tables

Although the use table comes very close to an empirical counterpart of the production network of my

model, it cannot be directly used in my empirical analysis as it only shows the uses of each commodity

by each industry, not the uses of each industrial product by each industry. This is because the BEA’s

accounting system allows for each industry to produce multiple commodities (e.g., secondary production),

contradicting to my conceptualization. Hence I first need to convert the use table to a symmetric industry-

by-industry input output table by transferring inputs and output over the rows in the use and supply
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table, respectively.99 This reattribution of the commodities supplied will leave us with the industry-

by-industry use table, which is my input-output table. This is accompanied by the transformed supply

table, whose off-diagonal elements are all zero.100 To do this, I impose an assumption about how each

commodity is used.

Assumption B.1 (Fixed Product Sales Structures, (Eurostat 2008)). Each product has its own specific

sales structure, irrespective of the industry where it is produced.

The term “sales structure” here refers to the shares of the respective intermediate and final users in the

sales of a commodity. Under Assumption B.1, each commodity is used at the constant rates regardless of

in which industry it is produced. For example, a unit of an manufacturing product supplied by agriculture

industry will be transferred from the use of manufacturing product to that of agricultural products in the

use table in the same proportion to the use of manufacturing products.101 Note that the value added part

remains intact throughout this manipulation. Recorded in each cell of the intermediate inputs section

of the resulting industry-by-industry table is the empirical counterpart of my
∑Ni

k=1(1− τi,j)Pimik,j , and

each cell of the compensation of employee corresponds to
∑Ni

k=1W`ik. These are the data that is used

four constructing the production network in my empirical analysis as shown in the following fact.

Fact B.2. Under Assumption B.1, the input-output linkages ωL and Ω are recovered from the observables.

Proof. By Shephard lemma,102 it holds that for each i, j ∈ N, the cost-based intermediate expenditure

shares ωi,j satisfies

ωi,j =

∑Ni
k=1(1− τi,j)Pjmik,j∑Ni

k=1

{∑N
j′=1(1− τi,j′)Pj′mik,j′ +W`ik

}
=

∑Ni
k=1(1− τi,j)Pjmik,j∑N

j′=1

∑Ni
k=1(1− τi,j′)Pj′mik,j′ +

∑Ni
k=1W`ik

. (41)

Also, for each i ∈ N, cost-based equilibrium factor expenditure shares ωi,L satisfies:

ωi,L =

∑Ni
k=1W`ik∑Ni

k=1

{∑N
j′=1(1− τi,j′)Pj′mik,j′ +W`ik

}
=

∑Ni
k=1W`ik∑N

j′=1

∑Ni
k=1(1− τi,j′)Pj′mik,j′ +

∑Ni
k=1W`ik

.

99For example, if there is a non-zero entry in the cell of the supply table whose column is agriculture and whose row is
manufacturing products, it is recorded in the use table as the supply of manufacturing products, the largest component of
which should be accounted for by the supply from manufacturing industry. Now my goal is to modify this attribution in a
way that the supply of manufacturing products by agriculture industry is treated as agricultural products. To this end, I
need to subtract the contributions of agriculture industry from the use of manufacturing products, and transfer them to the
agricultural commodities, thereby changing the classification of the row from commodity to industry.

100There is another approach to transform the use table to a symmetric commodity-by-commodity table. In such a case,
sectors of my conceptual model corresponds to commodities in the data. See Eurostat (2008) for the detail.

101Related to this assumption is the fixed industry sales structure assumption, in which . However, it is Assumption B.1
that is widely used by statistical offices for various reasons. See Eurostat (2008) for the detail.

102See Liu (2019), Baqaee and Farhi (2020) and Bigio and La’O (2020) for application and reference.
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Since
{∑Ni

k=1(1 − τi,j)Pjmik,j

}N
i,j=1

and {
∑Ni

k=1W`ik}Ni=1 are directly observed in the transformed

industry-by-industry input-output table, I can immediately recover ωL and Ω, as desired.

Figure compares the input-output table based on the use table and transformed industry-by-industry

input-output table.

B.2.2 Sectoral Tax/Subsidy

Given that the use table has been transformed into a symmetric industry-by-industry input-output table,

I can proceed to back out the tax/subsidy from the transformed table. In this step, I exploit the feature

of the use table that reports value added at basic and purchasers’ prices. The value added measured

at basic prices is composed of i) compensation of employees (V001), ii) gross operating surplus (V003)

and iii) other taxes on production (T00OTOP) less subsidies (T00OSUB). The value added at producers’

prices further entails iv) taxes on products (T00TOP) and imports less subsidies (T00SUB).103 According

to BEA (2009), the tax-related components of (iii) and (iv) jointly include, among many others, sales

and excise taxes, customs duties, property taxes, motor vehicle licenses, severance taxes, other taxes and

special assessments as well as commodity taxes, while the subsidy-related components refer to monetary

grants paid by government agencies to private business and to government enterprises at another level

of government.104 I consider the sum of (iii) and (iv) to be the empirical counter part of the policy

expenditure in my model. This choice is motivated by the mapping between the BEA’s data construction

and my conceptualization. First, the construction of data states:

Profitsi = (Revenuei + TaxSubsidy1i)− (LaborCosti +MaterialCosti + TaxSubsidy2i)

∴ Revenue−MaterialCosti︸ ︷︷ ︸
Value-added

= Profitsi︸ ︷︷ ︸
Gross operating profits

+ LaborCosti︸ ︷︷ ︸
Compensation of employees

− (TaxSubsidy1i − TaxSubsidy2i)︸ ︷︷ ︸
Value-added taxes less subsidies

,

(42)

where TaxSubsidy1i is taxes less subsidies on revenues, and TaxSubsidy2i those on input costs. Notice

that the value-added taxes less subsidies (TaxSubsidy1i − TaxSubsidy2i) are available in the data.

To back out tax/subsidy data from this table, I need to restrict the scope of analysis to sector-specific

tax/subsidy.

Assumption B.2. Taxes and subsidies are specific to sectors: i.e., τ := {τi}Ni=1.

103By construction, the sum of the latter across all industries has to coincide with GDP for the economy.
104In BEA (2009), compensation of employees is defined to be “”
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Figure 4: Comparison of Input-Output Tables

(a) Use table

(b) Transformed industry-by-industry table

Note: This figure illustrates the input-output table in terms of cost share of sectoral goods. Panel (a) shows the use table that

is provided by BEA, while panel (b) reports the transformed industry-by-industry table. White cells indicate zero, while light,

medium and dark grey cells represent the low (0 ∼ 0.2), medium (0.2 ∼ 0.5) and high (0.5 ∼ 1.0) cost shares, respectively.
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Under this assumption, the theoretical counterpart of the data construction (42) is

Ni∑
k=1

π∗ik =

Ni∑
k=1

p∗ikq
∗
ik −

{
W ∗`∗ik + (1− τi)

N∑
j=1

PMi
∗
m∗ik,j

}

∴
Ni∑
k=1

p∗ikq
∗
ik −

N∑
j=1

PMi
∗
m∗ik,j︸ ︷︷ ︸

Value-added

=

Ni∑
k=1

π∗ik︸ ︷︷ ︸
Gross operating profits

+ W ∗`∗ik︸ ︷︷ ︸
Compensation of employees

− τi

N∑
j=1

PMi
∗
m∗ik,j︸ ︷︷ ︸

Value-added taxes less subsidies

.

(43)

On the basis of this formulation, I can back out ad-valorem taxes/subsidy from the constructed

input-output table. This is summarized in the following fact.

Fact B.3. Under Assumptions B.1 and B.2, sector-specific subsidies τ := {τi}Ni=1 are recovered from the

observables.

Proof. For each sector (industry) i ∈ N, I have

(1− τi)
N∑
j=1

Ni∑
k=1

P ∗jm
∗
ik,j =

N∑
j=1

IntermExpendi,j , (44)

where IntermExpendi,j means the sector i’s total expenditure on sector j, which is observed in the

(i, j) entry of the industry-by-industry input-output table constructed in Appendix B.2.1. Meanwhile,

comparing (42) to (43), I obtain

τi

N∑
j=1

Ni∑
k=1

P ∗jm
∗
ik,j = V ATi, (45)

where V ATi stands for the sector i’s value-added taxes less subsidies, reported in the BEA use table.

Rearranging (44) and (45), I can recover the data for sector-specific taxes/subsidies:

τi =
V ATi

V ATi +
∑N

j=1 IntermExpendi,j
.

Remark B.1. Operationalizing the ad-valorem taxes/subsidies in this way, its conceptual definition

should be interpreted as an overall extent of wedges that promotes or demotes the purchase of input

goods.

B.3 Firm-Level Data: Compustat Data

The data source for firm-level data is the Compustat data provided by the Wharton Research Data

Services (WRDS). This database provides detailed information about a firm’s fundamentals, based on
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financial accounts. Though the coverage is limited to publicly traded firms, they tend to be much larger

than private firms and thus account for the dominant part of the industry dynamics (Grullon et al. 2019).

For the analysis of my paper, I use the following items: Sales (SALES), Costs of Goods Sold (COGS),

Selling, General & Administrative Expense (SGA) and Number of Employees (EMP).

I basically follow De Loecker et al. (2020) and De Loecker et al. (2021) in constructing the empirical

counterparts of the variables of my model. That is, SALES corresponds to the firm’s revenue, COGS to

the firm’s variable costs, and SGA to the firm’s fixed costs. Although my model abstracts away from fixed

entry costs, I need to apportion labor and material inputs between the variable and fixed costs to recover

labor and material inputs. To this end, De Loecker et al. (2020) rely on a parametric assumption, while

my framework does not impose any particular functional form restriction on the firm-level production. I

instead use the direct measurement of the number of employees (EMP), and assume that the cost shares

of labor and material are constant for both fixed and variable costs.

Assumption B.3 (Constant Cost Share). For each sector i ∈ N and each firm k ∈ Ni, V ariableLaborCostik :

V ariableMaterialCostik = FixedLaborCostik : FixedMaterialCostik = δik : 1 − δik, where δik ∈ [0, 1]

is a constant specific to firm k.

This assumption states that my empirical measurement of the variable costs COGSik and fixed costs

SGAik are made up of the same proportion of labor and material inputs.

B.3.1 Labor & Material Inputs

As in De Loecker et al. (2021), my construction starts from combining COGSik and SGAik to compute

the total costs. The firm k’s total costs is given by:

TotalCostsik = TotalLaborCostik + TotalMaterialCostik

= V ariableLaborCostik + FixedLaborCostik + V ariableMaterialCostik + FixedMaterialCostik

= V ariableLaborCostik + V ariableMaterialCostik︸ ︷︷ ︸
COGSik

+FixedLaborCostik + FixedMaterialCostik︸ ︷︷ ︸
SGAik

= COGSik + SGAik. (46)

Since both Cogsik and SGAik are observed in the data, I can compute the firm k’s total expense

(TotalCostik).

The total expenditure on labor input is

TotalLaborCostsik = V ariableLaborCostsik + FixedLaborCostsik

= W ×AverageHoursWorked× Employeesik︸ ︷︷ ︸
EMPik

= W × TotalHours

TotalEmployees
× EMPik. (47)

From Fact B.1, the wage W is directly observed in data. I can also observe both TotalHours and

TotalEmployees in the BEA data. Moreover the Compustat data provide information about the number
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of employees (EMPik). Hence I can calculate the firm k’s total labor expense (TotalLaborCostsik).

Then, the total expenditure on material input is obtained by

TotalMaterialCostsik = TotalCostsik − TotalLaborCostsik. (48)

Next, I invoke Assumption B.3 to derive,

∴ V ariableLaborCostik =
1− δik
δik

V ariableMaterialCostik, (49)

and

∴ FixedLaborCostik =
1− δik
δik

FixedMaterialCostik, (50)

From (49) and (50), I have

V ariableMaterialCostik + FixedMaterialCostik = TotalMaterialCostik

∴
δik

1− δik
(V ariableLaborCostik + FixedLaborCostik) = TotalMaterialCostik

∴
δik

1− δik
TotalLaborCostik = TotalMaterialCostik,

so that

δik =
TotalMaterialCostik

TotalLaborCostik + TotalMaterialCostik
, (51)

where both TotalLaborCostik and TotalMaterialCostik can be calculated according to (47) and (48),

respectively.

Once again by Assumption B.3,

V ariableMaterialCostik =
1− δik
δik

V ariableLaborCostik,

so that I have

V ariableLaborCostik + V ariableMaterialCostik = COGSik

∴ V ariableLaborCostik = δikCOGSik,

and

V ariableMaterialCostik = (1− δik)COGSik,

Since δik is given by (51), I can recover V ariableLaborCostik (the empirical counterpart of W ∗`∗ik) and

V ariableMaterialCostik (the empirical counterpart of PMi
∗
m∗ik) from data. In view of Fact B.1, I can

divide the former by the wage W ∗, and the latter by the sectoral cost index PMi
∗

to obtain the firm’s
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labor `∗ik and material input m∗ik. These are summarized in the following fact.

Fact B.4 (Labor & Material Inputs). Under Assumption B.3, the firm-level labor input `∗ik and material

input m∗ik are recovered from the data.

B.3.2 Recovering Derived Demand for Sectoral Intermediate Goods

Since I lack separate data on the firm-level input demand for sectoral intermediate goods, I have to divid

the firm’s expenditure on material input in a way that is consistent with the configuration of the input-

output linkage. To this end, I make additional assumptions on the form of aggregator function Gi in (13).

Specifically, I assume that the material input mik aggregates sectoral intermediate goods according to

the Cobb-Douglas production function:105

Assumption B.4. The material input mik comprises sectoral intermediate goods according to the Cobb-

Douglas production function:

mik =
N∏
j=1

m
γi,j
ik,j , (52)

where mik,j is sector j’s intermediate good demanded by firm k in sector i and γi,j denotes the input share

of sector j’s intermediate good with
∑N

j=1 γi,j = 1.

Here it is implicitly assumed that the input share is the same within sector i. The producer price

index for material input PMi is defined through the following cost minimization problem:

PMi := min
{m◦ik,j}

N
j=1

N∑
j=1

(1− τi)Pjm◦ik,j

s.t.
N∏
j=1

(m◦ik,j)
γi,j ≥ 1.

(53)

In recovering the input demand for sectoral intermediate goods, I make use of the following fact.

Under Assumption B.4, with the aid of the formulation (53), I can recover both the cost index of

material input and the input demand for sectoral intermediate goods from the observables.

Fact B.5 (Identification of γi,j , P
M
i & mik,j). Suppose that Assumptions B.2 and B.4 holds. Then, i)

for each sector i = {1, . . . , N}, the input shares {γi,j}Nj=1, and the cost index for material input PMi are

identified from the observables; and ii) for each sector i = {1, . . . , N} and for each firm k ∈ Ni, the input

demand for composite intermediate goods {mik,j}Nj=1 are identified from the observables.

Proof. (i) From the first order conditions for the cost minimization, I have

(1− τi)Pj′mik,j′ =
γi,j′

γi,j
(1− τi)Pjmik,j ,

105In principle, this assumption is necessitated in order to compensate the shortcoming of the dataset at hand. This
assumption could be relaxed to the extent which allows us to recover the material input and demand for sectoral intermediate
goods. Also this assumption could even be omitted if detailed data on firm-to-firm trade is available such as [reference...].
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Substituting this into (41) leads to

ωi,j =

∑Ni
k=1(1− τi)Pjmik,j

1
γi,j

∑Ni
k=1(1− τi)Pjmik,j +

∑Ni
k=1W`ik

,

where I note
∑N

j′=1 γi,j′ = 1 by assumption. Rearranging this, I arrive at

γi,j =

∑Ni
k=1(1− τi)Pjmik,j

1
ωi,j

∑Ni
k=1(1− τi)Pjmik,j −

∑Ni
k=1W`ik

=

∑Ni
k=1(1− τi)Pjmik,j∑N

j′=1

∑Ni
k=1(1− τi)Pj′mik,j′

=
ωi,j∑N
j′=1 ωi,j′

.

Since terms in the right-hand side {ωi,j′}Nj′=1 are observed in the data (see Appendix B.2.1), the parameter

γi,j can thus be identified for all i ∈ N.

From (53), the cost index for material input PMi is given by:

PMi =
N∏
j=1

1

γ
γi,j
i,j

{(1− τi)Pj}γi,j . (54)

Given that {γi,j}Nj=1 are identified above, PMi is also identified.

(ii) Now, using again the first order condition for the cost minimization problem, I have

(1− τi)Pj = νikγi,j
mik

mik,j
,

where νik is the marginal cost of constructing additional unit of material input (De Loecker and Warzynski

2012; De Loecker et al. 2016, 2020), which is PMi . Hence,

mik,j = γi,j
PMi

(1− τi)Pj
mik, (55)

from which mik,j , the input demand for sector j’s composite intermediate good from sector i, is identified.

This completes the poof.

B.3.3 Treatment of Capital

Our theoretical framework is static and abstract away from capital accumulation over periods of time.

In reality, however, capital plays a great important role in firm’s production and input decisions. As a

matter of fact, various information about capital is reported in my data source. To make my conceptual

framework consistent to the empirical measurement, I impose the following assumption.

Assumption B.5 (Capital Endowment). For each sector i ∈ N, i) each firm k ∈ Ni is endowed with

capital stock before input decisions are made; and ii) capital stock enters the firm-level production function
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in a Hicks-neutral fashion.

Assumption B.5 (i) states that firms do not choose but are given capital, and this capital endowment

is independent of labor and material inputs. Note that the capital endowment can still be a function

of the firm’s productivity. Assumption B.5 (ii) means that the capital enters the production function

in a multiplicative way. Under these two requirements, the firm’s capital and productivity are nor

discernible. This implies that the productivity in my model should be understood as a composite of

these two components, or overall capability of production. For example, a “productive” firm in my model

is so either because it has an efficient technology of production or because it is endowed with massive

capital assets such as a large factory. Whichever the case is, capital endowment is treated as part of the

unobservable firm-level productivity.
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C Identification: Proofs of Theorems

In this section, theoretical results displayed in Section 5 are derived in a more general setup under a milder

setting than the main text. Specifically, I allow for a sector-input-specific subsidy as in Liu (2019), and

identify the firm-level quantity and price without imposing the HSA demand system (Assumption 3.4),

followed by the identification of the residual inverse demand curve under Assumption 3.4. Accordingly,

this section considers a policymaker who has control over sector-input-specific subsidies τ := {τi,j}Ni,j=1

and wants to evaluate the effect of a particular subsidy τn,n′ on the country’s GDP.

To investigate the behavior of Yi(τ ) in response to a change in τn,n′ , I assume that it is totally

differentiable in terms of τn,n′ .

Assumption C.1 (Total Differentiability). For each sector i ∈ N, Yi(τ ) is totally differentiable with

respect to τn,n′.

Under this assumption, taking total derivatives of (23) with respect to τn,n′ yields

dYi(s)

ds

∣∣∣∣
s=τn,n′

=

Ni∑
k=1

(
dp∗ik
dτn,n′

q∗ik︸ ︷︷ ︸
price effects

+ p∗ik
dq∗ik
dτn,n′︸ ︷︷ ︸

quantity effects

)
−

Ni∑
k=1

N∑
j=1

(
dP ∗j
dτn,n′

m∗ik,j︸ ︷︷ ︸
Ialth effects

+ P ∗j
dm∗ik,j
dτn,n′︸ ︷︷ ︸

switching effects

)
. (56)

Clearly, the object of interest is characterized by the eight variables appearing in the right-hand side

of (56): namely, p∗ik, q
∗
ik, m

∗
ik,j ,

dp∗ik
dτn,n′

,
dq∗ik
dτn,n′

,
dm∗ik,j
dτn,n′

, P ∗i , and
dP ∗i
dτn,n′

. The goal of my analysis therefore

boils down to identifying the values of these variables.

C.1 Recovering the Values of Firm-Level Quantity and Price

In this subsection, I derive the identification of the firm-level quantity and prices under a set of slightly

milder conditions than described in the main text.

C.1.1 Identification of the Values of Markup

It can be shown that under the assumptions imposed in the main text (summarized below for the ease

of exposition), I can immediately recover the firm-level markups from the observables.106

Assumption C.2 (Input Markets). (i) The input markets are perfectly competitive. (ii) All inputs are

variable.

This assumption is maintained in Section 3.3.

Fact C.1. Suppose that Assumptions 3.5 and C.2 and hold. For each sector i ∈ N and each firm k ∈ Ni,

the value of the firm-level markup µ∗ik can be recovered from the data.

106See (Syverson 2019), De Loecker et al. (2020) and Kasahara and Sugita (2020) for discussion.
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Proof. Observe that under Assumption C.2, the firm’s markup µik can be expressed as:

µ∗ik :=
p∗ik
MC∗ik

=
p∗ik
AC∗ik

AC∗ik
MC∗ik

=
p∗ikq

∗
ik

AC∗ikq
∗
ik

AC∗ik
MC∗ik

=
Revenue∗ik
TC∗ik

AC∗ik
MC∗ik

,

where MC∗ik, AC
∗
ik, and TC∗ik represent the equilibrium values of the marginal, average, and total costs,

respectively. Note here that
AC∗ik
MC∗ik

is the elasticity of cost with respect to quantity (Syverson 2019), which

in my case equals one due to Assumption 3.5 (i). Hence, I have

µ∗ik =
Revenue∗ik
TC∗ik

,

i.e., the value of the firm’s markup equals to the ratio of revenue to total costs, both of which are observed

in the data. Thus, the value of the firm-level markup µ∗ik is identified from the observables, as desired.

C.1.2 Identification of the Values of Quantity and Price

The following assumption is milder than Assumption 3.4 and encompasses the HSA demand system.

Let Ri, Li and Mi be the observed supports of revenue rik, labor input `ik and material input mik,

respectively.

Assumption C.3 (Residual Inverse Demand Function). For each sector i ∈ N,

(i) there exist some functions H1,i, H2,i : RNi
+ → R such that for each firm k ∈ Ni, there exists a

function ψi : Si ×R×R→ R+ such that pik = ψi(qik, H1,i(qi), H2,i(qi); Ii);

(ii) there exist some functions H1,i,H2,i : RNi
i → R such that a) there exists a function χi : R×R×R→

Si such that q∗ik = χi(zik,H1,i(zi),H2,i(zi); Ii) for all k ∈ Ni; and b) there exists a function

Mi : Li ×Mi ×R×R→ R such that zik =Mi(`ik,mik,H1,i(zi),H2,i(zi); Ii) for all k ∈ Ni.

Assumption C.3 (i) and (ii), respectively, states that the other players’ choices and productivities

matter only through some transformations that are common across firms in the same sector: i.e., these

jointly constitute sufficient statistics for competitors’ quantity decisions and productivities. In particular,

the assumption (i) embeds the HSA demand system described in Assumption 3.4 in that H1,i(·) and H2,i(·)
corresponding to the quantity index Ai(·) in (11) but is not necessarily constrained by Assumption 3.4.107

This assumption moreover includes the case of a homothetic demand system with direct implicit additivity

(HDIA) and a homothetic demand system with indirect implicit demand system (HIIA), proposed in

107Either of H1,i(·) and H2,i(·) needs to be “shut down” adequately.
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(Matsuyama and Ushchev 2017). Note here that Assumption C.3 (i) does not require homotheticity of

the demand system.

Remark C.1. In principle, Assumption C.3 can be extended to an arbitrary number of aggregator func-

tions H(·) and H(·) insofar as they are all common across firms in the same sector.

To facilitate exposition, I introduce a tilde notation to denote the logarithm of each variable. For

instance, I write the logarithms of firm’s revenue, labor and material inputs, and productivity as r̃ik, ˜̀
ik,

m̃ik and z̃ik, respectively. Also, the logarithms of firm’s output quantity and price are expressed as:

q̃ik := ln qik = f̃i(˜̀
ik, m̃ik; z̃ik), (57)

and

p̃ik := ln pik = ψ̃i(q̃ik, H̃1,i(q̃i), H̃2,i(q̃i); Ii), (58)

where f̃i(·) := (ln ◦fi ◦exp)(·), ψ̃ik(·) := (ln ◦ψik ◦exp)(·), and H̃1,i(·) := (ln ◦Hi ◦exp)(·) with H̃2,i(·) being

analogously defined. Correspondingly, the observed supports for rik, `ik and mik are denoted by R̃i, L̃i

and M̃i, respectively. In what follows, I let the aggregator functions H1,i, H2,i and the information set

Ii be absorbed in the sector index i for the sake of brevity.

Let ∂f̃i(·)∗
∂ ˜̀
ik

and ∂f̃i(·)∗
∂m̃ik

, respectively, denote the equilibrium values of the first-order derivatives of the

log-production function with respect to log-labor and log-material: i.e.,

∂f̃i(·)∗

∂ ˜̀
ik

:=
∂f̃i(·)
∂ ˜̀
ik

∣∣∣∣∣
(˜̀
ik,m̃ik)=(˜̀∗

ik,m̃
∗
ik)

,

and ∂f̃i(·)∗
∂m̃ik

is analogously defined.

It can easily be shown that ∂f̃i(·)∗
∂ ˜̀
ik

and ∂f̃i(·)∗
∂m̃ik

are identified from the data.

Proposition C.1. Suppose that Assumptions 3.5 and C.2 hold. Then, the equilibrium values of the

derivative of the production function with respect to labor and material can be recovered from the observ-

ables.

Proof. Under Assumptions 3.5 and C.2, the firm’s input cost minimization problem is well-defined and

has interior solutions only. For a given level of output q̃∗ik, the Lagrange function associated to the firm’s

cost minimizing problem in terms of the logarithm variables reads:

L̃(˜̀
ik, m̃ik, ξik) := exp{W̃ + ˜̀

ik}+ exp{P̃Mi + m̃ik} − ξik
(

exp{f̃i(˜̀
ik, m̃ik; z̃ik)} − exp{q̃∗ik}

)
,

where ξik represents the Lagrange multiplier indicating the marginal cost of producing an additional unit

of output at the given level q̃∗ik (De Loecker and Warzynski 2012; De Loecker et al. 2016, 2020). The first
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order conditions at q̃∗ik are given by

[˜̀ik] : exp{W̃ + ˜̀∗
ik} − ξik

∂f̃i(·)∗

∂ ˜̀
ik

exp{f̃i(˜̀∗
ik, m̃

∗
ik; z̃ik)} = 0 (59)

[m̃ik] : exp{P̃Mi + m̃∗ik} − ξik
∂f̃i(·)∗

∂m̃ik
exp{f̃i(˜̀∗

ik, m̃
∗
ik; z̃ik)} = 0, (60)

where ˜̀∗
ik and m̃∗ik, respectively, are labor and material inputs corresponding to the given q∗ik. Taking the

ratio between (59) and (60), I have

∂f̃i(·)∗
∂ ˜̀
ik

∂f̃i(·)∗
∂m̃ik

=
exp{W̃ + ˜̀∗

ik}
exp{P̃Mi + m̃∗ik}

. (61)

Here, due to Assumption 3.5 (i),

∂f̃i(·)∗

∂ ˜̀
ik

+
∂f̃i(·)∗

∂m̃ik
= 1,

so that (61) gives

∂f̃i(·)∗

∂ ˜̀
ik

=
exp{W̃ + ˜̀∗

ik}
exp{W̃ + ˜̀∗

ik}+ exp{P̃Mi + m̃∗ik}
∂f̃i(·)∗

∂m̃ik
=

exp{P̃Mi + m̃∗ik}
exp{W̃ + ˜̀∗

ik}+ exp{P̃Mi + m̃∗ik}
.

Since both exp{W̃ + ˜̀∗
ik} and exp{P̃Mi + m̃∗ik} are available in the data, I thus can identify ∂f̃i(·)∗

∂ ˜̀
ik

and

∂f̃i(·)∗
∂m̃ik

from the observables, as claimed.

Next, I closely follows Kasahara and Sugita (2020) in identifying the equilibrium values of firm-level

output quantity and price and thus the notations are intentionally set closed to theirs.

To begin with, I admit a measurement error in the observed log-revenue:108

r̃ik = ψ̃i(q̃ik) + q̃ik + η̃ik

= ϕ̃i(q̃ik) + η̃ik

= ϕ̃i(f̃i(˜̀
ik, m̃ik,M̃i(˜̀

ik, m̃ik)) + η̃ik

= φ̃i(˜̀
ik, m̃ik) + η̃ik,

where ϕ̃i(q̃ik) := ψ̃i(q̃ik)+q̃ik, and φ̃i(·) is the nonparametric component of the revenue function in terms of

labor and material inputs satisfying φ̃i(˜̀
ik, m̃ik) = ϕ̃i(f̃i(˜̀

ik, m̃ik,M̃i(˜̀
ik, m̃ik)). The additive separability

108The measurement error is supposed to capture the variation in revenue that cannot be explained by firm-level input
variables nor aggregate variables. This can be conceived as i) a shock to the firm’s production that is unanticipated to the
firm and hits after the firm’s decision has been made, ii) the coding error in the measurement used by the econometrician
to observe the revenue.
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of the log measurement error η̃ik is chosen to conform to the bulk of the literature on identification and

estimation of production functions.109

Towards identification, it is posited that the econometrician has knowledge about the following con-

ditions.

Assumption C.4. (i) Strict Exogeneity. E[η̃ik|˜̀ik, m̃ik] = 0. (ii) Continuous Differentiability. φi(·) is

at least first differentiable in each of its argument. (iii) Normalization. For each i ∈ N and each k ∈ Ni,

there exists a pair of labor and material inputs (˜̀◦
ik, m̃

◦
ik) ∈ Li ×Mi such that fi(˜̀◦

ik, m̃
◦
ik; zik) = 0.

Lemma C.1. Suppose that Assumptions 3.5, C.2, and C.4 hold. Then, the logarithms of the firm-level

output quantity q̃∗ik and price p̃∗ik can be identified up to scale from the observables.

Proof. The proof proceeds in three steps.

Step 1:

The first step identifies the firm’s revenue free of the measurement errors ¯̃rik in terms of (˜̀
ik, m̃ik),

eliminating the measurement error η̃ik. From Assumption C.4, I can identify φ̃i(·), ¯̃rik and ε̃ik according

to

φ̃i(˜̀
ik, m̃ik) = E[r̃ik|x̃ik];

¯̃rik = φ̃i(˜̀
ik, m̃ik); and

η̃ik = r̃ik − ¯̃rik.

Step 2:

Next, I aim to identify the derivative of the inverse of the revenue function ϕ̃i. By definition, it is

true that

f̃i(˜̀
ik, m̃ik,M̃i(˜̀

ik, m̃ik)) = ϕ̃−1
i (¯̃rik), (62)

where I know from the identification result above that ¯̃rik = lnKi(˜̀
ik, m̃ik). Taking derivatives of (62)

with respect to ˜̀
ik and m̃ik derivers

∂f̃i(·)
∂ ˜̀
ik

+
∂f̃i(·)
∂z̃ik

∂M̃(·)i
∂ ˜̀
ik

=
∂ϕ̃−1

i (·)
∂ ¯̃rik

∂φ̃i(·)
∂ ˜̀
ik

(63)

∂f̃i(·)
∂m̃ik

+
∂f̃i(·)
∂z̃ik

∂M̃i(·)
∂m̃ik

=
∂ϕ̃−1

i (·)
∂ ¯̃rik

∂φ̃i(·)
∂m̃ik

(64)

for all (˜̀
ik, m̃ik) ∈ L̃i × M̃i. Here notice that

dϕ̃−1
i (·)
d¯̃rik

=
(dϕ̃i(·)
dq̃ik

)−1
, with the right-hand side being the

firm’s markup (Kasahara and Sugita 2020). Owing to Fact C.1, the equilibrium firm’s markup (in log)

109This specification is equivalent to assume that the error terms enter in a multiplicative way the system of structural
equations in terms of the original variables. The additive separability of the measurement errors in terms of the logarithm
variables are canonically employed in the literature (Olley and Pakes 1996; Levinsohn and Petrin 2003; Ackerberg et al.
2015; Gandhi et al. 2019).
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µ̃ik is obtained by

µ̃ik = ¯̃rik − ˜TCik(˜̀∗
ik, m̃

∗
ik),

where ˜TCik(˜̀
ik, m̃ik) := ln[exp{W̃ + ˜̀

ik}+ exp{P̃Mi + m̃ik}].
Thus,

dϕ̃−1
i (·)
d¯̃rik

is identified as

∂ϕ̃−1
i (·)
∂ ¯̃rik

= φ̃i(˜̀
ik, m̃ik)− ln[exp{W̃ + ˜̀

ik}+ exp{P̃Mi + m̃ik}].

Since the values of ∂f̃i(·)
∂ ˜̀
ik

and ∂f̃i(·)
∂m̃ik

are identified in Proposition C.1, I can also identify ∂f̃i(·)
∂z̃ik

∂M̃i(·)
∂ ˜̀
ik

and ∂f̃i(·)
∂z̃ik

∂M̃i(·)
∂m̃ik

, respecitively, through (63) and (64):

∂f̃i(·)
∂z̃ik

∂M̃i(·)
∂ ˜̀
ik

=
∂ϕ̃−1

i (·)
∂ ¯̃rik

∂φ̃i(·)
∂ ˜̀
ik

− ∂f̃i(·)
∂ ˜̀
ik

, (65)

and

∂f̃i(·)
∂z̃ik

∂M̃i(·)
∂m̃ik

=
∂ϕ̃−1

i (·)
∂ ¯̃rik

∂φ̃i(·)
∂m̃ik

− ∂f̃i(·)
∂m̃ik

. (66)

Step 3: The final step recovers the realized value of firm-level output quantity by means of integration:

q̃∗ik = f̃i(˜̀
ik, m̃ik, z̃ik)

=

∫ ˜̀
ik

˜̀◦
ik

(
∂f̃i

∂ ˜̀
ik

+
∂f̃i
∂z̃ik

∂M̃i

∂ ˜̀
ik

)
(s, m̃ik)ds+

∫ m̃ik

m̃◦ik

(
∂f̃i
∂m̃ik

+
∂f̃i
∂z̃ik

∂M̃i

∂m̃ik

)
(˜̀◦
ik, s)ds,

where I note that the value of f̃i(˜̀◦
ik, m̃

◦
ik, z̃ik) is known to the econometrician in light of Assumption C.4

(iii).

Lastly, I can also recover the realized value of the firm-level output price p̃∗ik through:

p̃∗ik = ¯̃rik − q̃∗ik.

This completes the proof.

Remark C.2. (i) Lemma C.1 rests on the identifiability of the value of the firm-level markup µik (Fact

C.1).Kasahara and Sugita (2020) instead exploit the panel structure of their dataset to first identify

the firm’s productivity from the observables. my framework, on the contrary, is static in nature, which

prohibits the use of panel data. In this light, the use of Fact C.1 can be considered a compromise between

the data availability and the model assumptions. (ii) Notice that I are not concerned with identifying the

firm’s productivity per se, and thus the proof of Lemma C.1 does not invoke the feature of the Hicks-

neutral productivity in the firm-level production function (14): i.e., the lemma goes through the case of

non-Hicks-neutral productivity as studied Demirer (2022) and Pan (2022). Under Hicks-neutrality, it

holds ∂f̃i(·)
∂z̃ik

= 1.
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Having Lemma C.1 established, the firm-level quantity and price can immediately be recovered by

reverting (57) and (58).

Proposition C.2. Suppose that the assumptions required in Lemma C.1 hold. Then the equilibrium

values of the firm-level quantity q∗ik and price p∗ik are identified up to scale from the observables.

C.2 Recovering Demand Function (Sectoral Aggregator)

I consider recovering the inverse demand function To begin with, each sectoral aggregator transforms

firm-level products into a single sectoral good through based on the cost minimization problem. This

defines the following unit cost condition: for each i = 1, . . . , N ,

Pi := min
{e◦ik}

N
i=1

Ni∑
k=1

pike
◦
ik

s.t. Fi({e◦ik}
Ni
k=1) ≥ 1,

(67)

where pik is the price of a product set by firm k in sector i.

By solving this, it follows that there exists a mapping Pi : S Ni
i → R+ such that

Pi = Pi(qi; Ii). (68)

C.2.1 HSA Demand System

With my notation, the HSA demand system in Assumption 3.4 can be expressed as follow. First, by

definition

Φi :=

Ni∑
k=1

p∗ikq
∗
ik,

where p∗ik and q∗ik are the equilibrium (realized) values of firm-level price and quantity. Then I can take

Φi =

Ni∑
k=1

ϕi(q
∗
ik), (69)

where rik = ϕi(qik) with ϕi(·) := (exp ◦ϕ̃i ◦ ln)(·).
Next, the residual inverse demand function faced by firm k in sector i takes the form of

pik =
Φi

qik
Ψi

(
qik

Ai
(
qi
)), (70)

where

Ψi(qik) =
ϕi(qik)

Φi
, (71)
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with

Ni∑
k=1

Ψi

(
qik

Ai
(
qi
)) = 1. (72)

C.2.2 Proof

I first identify the quantity index Ai(·) over the entire support S Ni
i . This is shown in Kasahara and

Sugita (2020).

Lemma C.2 (Identification of Ai; Kasahara and Sugita (2020)). Suppose that the same assumptions

in Lemma C.1 are satisfied. Assume moreover that Assumption 3.4 holds with (69) – (72). Then, the

quantity index Ai(qi) is identified.

Under Lemma C.2, the quantity index Ai(·) is nonparametrically identified as a function of qi, so

that its derivatives can also be nonparametrically identified.

Corollary C.1 (Identification of ∂Ai(·)
∂qik

and ∂2Ai(·)
∂qikqik′

). Suppose that the same assumptions required in

Lemma C.2 hold. Then, for each i ∈ N, i) ∂Ai(·)
∂qik′

and ii) ∂2Ai(·)
∂qikqik′

are identified for all k, k′ ∈ Ni.

The identified quantity index Ai(·) can be combined once again with (69) – (72) to recover the residual

inverse demand functions faced by firms under Assumption 3.4.

Proposition C.3. Suppose that the same assumptions required in Lemma C.2 hold. Then, the residual

inverse demand functions ψi(·) can be identified from the observables.

For each sector i ∈ N and for each firm k ∈ Ni, let mrik : Si ×S Ni−1
i → R be the marginal revenue

function; that is, mrik(qik,qi,−k; Ii) := ∂ψi(·)
∂qik

qik + pik. Given Lemma C.2, it is immediate to show that

for each k ∈ Ni, mrik(·) and its partial derivatives ∂mrik(·)
∂qik′

for each k′ ∈ Ni is identified.

Lemma C.3 (Identification of Marginal Revenue Function). Suppose that the assumptions required in

Lemma C.2 are satisfied. Then, i) the firm-level marginal revenue function mrik(·) and ii) its partial

derivatives ∂mrik(·)
∂qik′

for each k′ ∈ Ni are identified.

I can further recover the sectoral aggregator Fi(·), the partial derivatives of Fi(·) with respect to qik

(denoted by ∂Fi(·)
∂qik

) and the partial derivatives of Pi(·) with respect to qik (denoted by Pi(·)∂qik
) for all k ∈ Ni

are identified under an additional normalization condition.

Assumption C.5 (Normalization of HSA Demand System). There exists a collection of constants

{cik}Nik=1 such that Fi({cik}Nik=1) = 1.

Lemma C.4 (Identification of Sectoral Aggregators). Suppose that the assumptions required in Lemma

C.2 are satisfied. Assume moreover that Assumption C.5 holds. Then, i) the sectoral aggregator Fi(·),
and ii) the derivatives ∂Fi(·)

∂qik
and Pi(·)∂qik

for each k′ ∈ Ni, are identified as a function of qi. In particular,

evaluated at the realized values, it holds that ∂Fi(·)∗
∂qik

=
p∗ik
P ∗i

and Pi(·)
∗

∂qik
= −p∗ik

Q∗i
.
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Proof. i) By Proposition 1 (i) and Remark 3 (self-duality) of Matsuyama and Ushchev (2017), there

exists a unique monotone, convex, continuous and homothetic rational preference over the support of

q associated to the HSA inverse demand system (70) – (72). Clearly, this preference corresponds to

the sectoral aggregator Fi. Moreover, a variant of Proposition 1 (ii) of Matsuyama and Ushchev (2017)

implies that Qi can be expressed as110

lnFi(qi) = lnAi(qi) +

Ni∑
k=1

∫ qik/Ai(qi)

cik

Ψi(ζ)

ζ
dζ, (73)

where {cik}Nik=1 satisfy Assumption C.5.

Since, by Lemma C.2, Ai(·) is identified, it remains to prove that for each k ∈ N, Ψi(ζ)
ζ is identified

for all ζ ∈ [cik,
qik

Ai(qi)
].

Observe that ϕi in (71) is obtained by taking the continuous transformation and inverse of ϕ̃−1
i , which

is identified in the proof of Lemma C.1. Moreover, notice that for the realized values {q∗ik}
Ni
k=1, I can

recover Φi using (69): i.e.,

Φi =

Ni∑
k=1

ϕi(q
∗
ik),

where I emphasize that Φi is a constant that firms take as given. Then the identification of Ψi(ζ)
ζ , for

ζ ∈ [cik,
qik

Ai(qi)
], comes directly from its construction (71).

Hence, I can identify Fi(·) as a function of qi.

ii) Taking partial derivatives of (73) with respect to qik: for all qi ∈ S Ni
i ,

∂Fi(·)
∂qik

Fi(qi)
=

∂Ai(·)
∂qik

Ai(qi)
+

1

qik
Ψi

(qik
Ai

)
−
( Ni∑
k′=1

Ψi

(qik′
Ai

)) 1

Ai(qi)

∂Ai(·)
∂qik

,

so that by construction

∂Fi(·)
∂qik

= Fi(qi)

{(
1−

Ni∑
k′=1

Ψi

(qik′
Ai

))} 1

Ai

∂Ai
∂qik

+
1

qik
Ψi

( qik
Ai(qi)

)
= Fi(qi)

1

qik
Ψi

( qik
Ai(qi)

)
= Fi(qi)

1

qik

ϕ( qik
Ai(qi)

)

Φi

=
Fi(qi)

Φi

1

qik
ϕ
( qik
Ai(qi)

)
,

where the second equality follows from (72), and the last equation is a consequence of (69).

110See also Kasahara and Sugita (2020).
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Moreover, it hods by (69) that

Pi(qi)Fi(qi) = Φi.

Then, taking the partial derivatives of the both hand sides with respect to qik, I obtain

∂Pi(·)
∂qik

Fi(qi) + Pi(qi)
∂Fi(·)
∂qik

= 0

∴
∂Pi(·)
∂qik

= −Pi
Qi

∂Fi(·)
∂qik

.

This identifies ∂Pi(·)
∂qik

as a function of qi.

iii) For the realized values q∗i , if follows from (i) and (ii) of this lemma that

∂Fi(·)∗

∂qik
=
Fi(q

∗
i )

Φi

1

q∗ik
ϕ
( q∗ik
Ai(q∗i )

)
=

Q∗i
P ∗i Q

∗
i

1

q∗ik
r∗ik

=
p∗ik
P ∗i

,

and, thus

∂Pi(·)∗

∂qik
= −P

∗
i

Q∗i

p∗ik
P ∗i

= −
p∗ik
Q∗i

.

This completes the proof.

C.3 Recovering Comparative Statics

This section explores the identification of the comparative statics. I first identify the comparative statics

up to the total derivative of wage using the profit-maximization and cost-minimization problems. Then

I invoke the labor market clearing condition (22) to identify the policy impact on wage, leading to the

full identification of those comparative statics that have been identified up to the change in wage in the

previous stage (Appendices C.3.1 – C.3.2), which in turn is followed by the identification of changes in

input demand for sectoral intermediate goods (Appendix C.3.3).

C.3.1 Profit Maximization

In each sector i ∈ N, for the equilibrium wage W ∗, the material price index PMi
∗

and for each firm’s

optimal quantity q∗ik, there exist a pair of labor and material inputs that satisfies the following one-step
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profit maximization problem:

(¯̀∗
ik, m̄

∗
ik) ∈ arg max

`ik,mik

{
p∗ikq

∗
ik − (W ∗`ik + PMi

∗
mik)

}
s.t. q∗ik = fi(`ik,mik; zik).

The first order conditions with respect to labor and material inputs are given, respectively, by:

[`ik] : mrik(·)∗
∂fi(·)
∂`ik

∣∣∣∣
(`ik,mik)=(¯̀∗

ik,m̄
∗
ik)

= W ∗ (74)

[mik] : mrik(·)∗
∂fi(·)
∂mik

∣∣∣∣
(`ik,mik)=(¯̀∗

ik,m̄
∗
ik)

= PMi
∗
, (75)

where mrik(qi) is the firm k’s marginal revenue function, and I denote mrik(·)∗ := mrik(q
∗
i ).

Taking total derivatives of the both hand sides of (74) and (75) in terms of τn yields, respectively,

( Ni∑
k′=1

∂mrik(·)∗

∂qik′

dq∗ik′

dτn,n′

)
∂fi(·)∗

∂`ik
+mr∗ik(·)

(
∂2fi(·)∗

∂`2ik

d¯̀∗
ik

dτn,n′
+

∂2fi(·)∗

∂`ik∂mik

dm̄∗ik
dτn,n′

)
=

dW ∗

dτn,n′
(76)

( Ni∑
k′=1

∂mrik(·)∗

∂qik′

dq∗ik′

dτn,n′

)
∂fi(·)∗

∂mik
+mrik(·)∗

(
∂2fi(·)∗

∂`ikmik

d¯̀∗
ik

dτn,n′
+
∂2fi(·)∗

∂m2
ik

dm̄∗ik
dτn,n′

)
=
dPMi

∗

dτn,n′
, (77)

where

dq∗ik
dτn,n′

=
∂fi(·)∗

∂`ik

d¯̀∗
ik

dτn,n′
+
∂fi(·)∗

∂mik

dm̄∗ik
dτn,n′

.

Here, remember that firms only choose their output quantities through the profit maximization, while

input decisions are made in a way that minimizes total cots. Thus the “optimal” labor ¯̀∗
ik and material

inputs m̄∗ik chosen above are not necessarily the same ones as actually chosen by the firm. Rather,
¯̀∗
ik and material inputs m̄∗ik should be understood as a combination of inputs that only pins down the

change in the firm’s output quantity, whose corresponding production possibility frontier is in turn used

to determine the optimal input choices in the subsequent cost minimization problem (see Section ??).

From (76) and (77), it follows that, in equilibrium,

( Ni∑
k′=1

∂mrik(·)∗

∂qik′

dq∗ik′

dτn,n′

)
∂fi(·)∗

∂`ik
¯̀∗
ik +mrik(·)∗

(
∂2fi(·)∗

∂`2ik

¯̀∗
ik

d¯̀∗
ik

dτn,n′
+

∂2fi(·)∗

∂`ik∂mik

¯̀∗
ik

dm̄∗ik
dτn,n′

)

+

( Ni∑
k′=1

∂mrik(·)∗

∂qik′

dq∗ik′

dτn,n′

)
∂fi(·)∗

∂mik
m̄∗ik +mrik(·)∗

(
∂2fi(·)∗

∂`ikmik
m̄∗ik

d¯̀∗
ik

dτn,n′
+
∂2fi(·)∗

∂m2
ik

m̄∗ik
dm̄∗ik
dτn,n′

)

=
dW ∗

dτn,n′
¯̀∗
ik +

dPMi
∗

dτn,n′
m̄∗ik
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∴

( Ni∑
k′=1

∂mrik(·)∗

∂qik′

dq∗ik′

dτn,n′

)(
∂fi(·)∗

∂`ik
¯̀∗
ik +

∂fi(·)∗

∂mik
m̄∗ik

)
+mrik(·)∗

(
∂2fi(·)∗

∂`2ik

¯̀∗
ik +

∂2fi(·)∗

∂`ik∂mik
m̄∗ik

)
d¯̀∗
ik

dτn,n′
+mrik(·)∗

(
∂2fi(·)∗

∂`ik∂mik

¯̀∗
ik +

∂2fi(·)∗

∂m2
ik

m̄∗ik

)
dm̄∗ik
dτn,n′

=
dW ∗

dτn,n′
¯̀∗
ik +

dPMi
∗

dτn,n′
m̄∗ik

∴ q∗ik

Ni∑
k′=1

∂mrik(·)∗

∂qik′

dq∗ik′

dτn,n′
=

dW ∗

dτn,n′
¯̀∗
ik +

dPMi
∗

dτn,n′
m̄∗ik

∴
Ni∑
k′=1

∂mrik(·)∗

∂qik′

dq∗ik′

dτn,n′
=

1

q∗ik

(
dW ∗

dτn,n′
¯̀∗
ik +

dPMi
∗

dτn,n′
m̄∗ik

)
, (78)

where the third implication is a consequence of Assumption 3.5 (i). The expression (78) holds for each firm

in the same sector, thereby constituting a system of Ni equations in Ni unknowns (i.e., total derivatives

of the optimal quantities with respect to subsidy):


∂mri1(·)∗
∂qi1

∂mri1(·)∗
∂qi2

. . . ∂mri1(·)∗
∂qiNi

∂mri2(·)∗
∂qi1

∂mri2(·)∗
∂qi2

. . . ∂mri2(·)∗
∂qiNi

...
...

. . .
...

∂mriNi (·)
∗

∂qi1

∂mriNi (·)
∗

∂qi2
. . .

∂mriNi (·)
∗

∂qiNi


︸ ︷︷ ︸

=:Λi,1



dq∗i1
dτn,n′
dq∗i2
dτn,n′

...
dq∗iNi
dτn,n′

 =



¯̀∗
i1
q∗i1

m̄∗i1
q∗i1

¯̀∗
i2
q∗i2

m̄∗i2
q∗i2

...
...

¯̀∗
iNi
q∗iNi

m̄∗iNi
q∗iNi


︸ ︷︷ ︸

=:Λi,2

 dW ∗

dτn,n′
dPMi

∗

dτn,n′

 . (79)

In order to ensure that this system can be solved for the total derivatives of quantity with respect to

subsidy, I impose an assumption that the premultiplying term of the left-hand side is invertible.

Assumption C.6. For each sector i ∈ N, the matrix

Λi,1 :=


∂mri1(·)∗
∂qi1

∂mri1(·)∗
∂qi2

. . . ∂mri1(·)∗
∂qiNi

∂mri2(·)∗
∂qi1

∂mri2(·)∗
∂qi2

. . . ∂mri2(·)∗
∂qiNi

...
...

. . .
...

∂mriNi (·)
∗

∂qi1

∂mriNi (·)
∗

∂qi2
. . .

∂mriNi (·)
∗

∂qiNi


is nonsingular.

Assumption C.6 requires that the column vectors of Λi,1 are linearly independent. This assump-

tion trivially holds in monopolistic competition as Λi,1 simplifies to a diagonal matrix. The economic

content of this assumption in the case of oligopolistic competitions directly pertains to firms’ strategic

complementarities.

Example C.1 (Duopoly). For simplicity, consider a case of duopoly, wherein firm 1 and 2 are engaged

in a competition over quantity. It generally holds that |∂mri1(·)∗
∂qi1

| ≥ |∂mri1(·)∗
∂qi2

|. But, it is also true

that |∂mri2(·)∗
∂qi1

| ≤ |∂mri2(·)∗
∂qi2

|. Hence there is no such a constant that makes the column vectors Λi,1
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linearly dependent. In this sense, Assumption C.6 excludes a situation where the firm’s own strategic

complementarity is exactly the same as the competitor’s.

Under Assumption C.6, the system of equations (79) can be solved for { dq∗ik
dτn,n′

}Nik=1:



dq∗i1
dτn,n′
dq∗i2
dτn,n′

...
dq∗iNi
dτn,n′

 = Λ−1
i,1 Λi,2

 dW ∗

dτn
dPMi

∗

dτn,n′

 .

In this expression, Λ−1
i,1 captures the strategic interactions between firms through changes in marginal

revenues. Moreover, it can also be seen, from this expression, that { dq∗ik
dτn,n′

}Nik=1 depends on the levels of

firm’s current production Λi,2 as well as the responsiveness of the wage and material cost index.

Fact C.2. Suppose that Proposition C.2 and Lemma C.3 hold. Then, for each sector i ∈ N, the matrix

Λ−1
i,1 Λi,2 in (80) is identified.

Proof. First, {q∗ik}
Ni
k=1 are identified by Proposition C.2. Next, it follows from Lemma C.3 that {∂mrik∂q∗

ik′
}k,k′

are identified. Hence, the matrix Λ−1
i,1 Λi,2 in (80) is identified, as desired.

Letting λ−1
ik,k′ be the (k, k′) entry of the matrix Λ−1

i,1 , I can write

dq∗ik
dτn,n′

=

( Ni∑
k′=1

λ−1
ik,k′

¯̀∗
ik′

q∗ik′

)
dW ∗

dτn,n′
+

( Ni∑
k′=1

λ−1
ik,k′

m̄∗ik′

q∗ik′

)
dPMi

∗

dτn,n′

= λ̄Lik
dW ∗

dτn,n′
+ λ̄Mik

dPMi
∗

dτn,n′
, (80)

where λ̄Lik :=
∑Ni

k′=1 λ
−1
ik,k′

¯̀∗
ik′
q∗
ik′

and λ̄Mik :=
∑Ni

k′=1 λ
−1
ik,k′

m̄∗
ik′

q∗
ik′

correspond to the kth element of the first and

second column of the matrix Λ−1
i,1 Λi,2, respectively.

Note that λ̄Lik and λ̄Mik , respectively, can be understood as a measure of the sensitivity (elasticity) of the

sector’s overall strategic complementarity to a change in firm k’s output quantity, with the weight assigned

to the ratio between output and input quantities.111 These measures capture the extent of influence that

each firm exerts in strategic interactions. Intuitively, (80) states that the policy shocks coming through

the changes in the labor wage and material input cost affect the firm’s quantity adjustment decision

in proportion to the “market share” encoded in the weighted elasticities λ̄Lik and λ̄Mik of the sectoral

strategic complementarity. I call these measures the indices of firm’s contribution to sectoral strategic

111Observe that for a square matrix O, the inverse matrix O−1 is given by O−1 = adj(O)
|O| , where adj(O) is the adjoint

matrix of O, i.e., the transpose of the cofactor matrix. The cofactor matrix C of O is defined as C := [ca,b]a,b, where
ca,b := (−1)a+b|Ma,b|, with Ma,b representing the minor matrix of O that can be created by eliminating the a-th row and

b-th column from the matrix O. In my context, the k′-th column of the cofactor matrix of Λi,1 excludes { ∂mrik(·)∗
∂qik′

}Ni
k=1,

all of which are in turn ruled out from the k′-th row of the adjoint matrix. Since the determinant involves the effect of all
firms’ quantity changes, the weighted sum along each row of Λ−1

i,1 reflects the contribution of the changes in firm k′’s output
quantity.
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complementarity. These indices tell us the extent to which the market competition is affected by the

change in firm k’s quantity,112 and are similar in spirit to the index of competitor price changes of Amiti

et al. (2019). While their index compares the firm’s contribution to the rest of the market, my indices

λ̄Lik and λ̄Mik compares the rest of the market to the entire market, backing out the firm’s share. This

observation is best illustrated in the example of duopoly (see Example ??), and becomes acute in the

case of monopolistic competitions.

Example C.2 (Monopolistic Competition). I consider the same setup as Example ??, but depart by

assuming that both firms are monopolistic. In this case,

Λ−1
i,1 =

[
(∂mri1(·)∗

∂qi1
)−1 0

0 (∂mri2(·)∗
∂qi2

)−1

]
.

Then two measures of the firm 1’s contribution to the overall sectoral strategic complementarity are given

by λ̄Li1 = (∂mri1(·)∗
∂qi1

)−1 `
∗
i1
q∗i1

and λ̄Mi1 = (∂mri1(·)∗
∂qi1

)−1m
∗
i1

q∗i1
, both of which are typically negative.113 Provided that

both λ̄Li1 and λ̄Mi1 are negative, (80) implies that when the wage and material cost index become higher in

reaction to a policy change, firm 1 decreases its output quantity. An analogous argument applies to firm

2. When the firms are oligopolistic as in Example ??, the signs of λ̄Li1 and λ̄Mi1 are ambiguous because

they are determined in relation to the strategic complementarities.

Totally differentiating (68) yields

dP ∗i
dτn,n′

=

Ni∑
k′=1

∂Pi(·)∗

∂qik′

dq∗ik′

dτn,n′
. (81)

Upon substituting (80) into (81), I can write

dP ∗i
dτn,n′

=

Ni∑
k′=1

∂Pi(·)∗

∂qik′

(
λ̄Lik′

dW ∗

dτn,n′
+ λ̄Mik′

dPMi
∗

dτn,n′

)

=

( Ni∑
k′=1

∂Pi(·)∗

∂qik′
λ̄Lik′

)
dW ∗

dτn,n′
+

( Ni∑
k′=1

∂Pi(·)∗

∂qik′
λ̄Mik′

)
dPMi

∗

dτn,n′

= λ̄Li·
dW ∗

dτn,n′
+ λ̄Mi·

dPMi
∗

dτn,n′
, (82)

where λ̄Li· :=
∑Ni

k′=1
∂Pi(·)∗
∂qik′

λ̄Lik′ and λ̄Mi· :=
∑Ni

k′=1
∂Pi(·)∗
∂qik′

λ̄Mik′ . These are a weighted sum of the elasticities

of sectoral price index with respect to firms’ quantities, with the weight assigned to a firm’s index of

strategic complementarity in that sector. From the expression (82), λ̄Li· and λ̄Mi· can be interpreted as

representing a pass-through of a change in the wage and material input cost to the sectoral price index,

respectively.

112That these indices are negative means the presence of the firm drugs the sectoral strategic complementarity in the
direction of strategic substitutability, and vice verse.

113Precisely, the sign depends on the demand side parameters. For instance, when the sectoral aggregator takes the form
of a CES production function as in Example 3.1, these indices are negative as long as σi > 2.
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Example C.3 (Monopolistic Competition). Continuing Example C.2 and assuming that λ̄Li1, λ̄Li2, λ̄Mi1
and λ̄Mi2 have all turned out to be negative, I can proceed to calculate λ̄Li· and λ̄Mi· . Due to the law of

demand (i.e., ∂Pi(·)∗
∂qik′

< 0 for all k′ ∈ Ni), these are both positive. In light of (82), this in turn implies a

higher sectoral price index in response to higher wage and material cost index, which accords with a lower

output quantity seen in Example C.2.

Fact C.3. Suppose that Proposition C.2 and Lemma C.4 hold. Then, for each sector i ∈ N, λ̄Li· and λ̄Mi·
are identified.

Proof. First, q∗i and p∗i are identified by Proposition C.2. Next, it can immediately be seen from Fact

C.2 that λik,1 and λik,2 are identified. Moreover, in view of Lemma C.4, ∂Pi(·)
∗

∂qik
can be expressed in terms

of p∗i and Q∗i . Hence, λ̄Li· and λ̄Mi· are identified.

Meanwhile, taking total derivatives of (54), it holds that for a given n and n′,

dPMi
∗

dτn,n′
= −

N∑
j=1

γi,j
1− τi,j

PMi
∗
1{i=n,j=n′} +

N∑
j=1

γi,j
PMi

∗

P ∗j

dP ∗j
dτn,n′

, (83)

where 1{i=n,j=n′} takes one if i = n and j = n′, and zero otherwise.

Substituting (82) for
{ dP ∗j
dτn,n′

}N
j=1

into (83), I arrive at

dPMi
∗

dτn,n′
= −

N∑
j=1

γi,j
1− τi,j

PMi
∗
1{i=n,j=n′} +

( N∑
j=1

γi,j
PMi

∗

P ∗j
λ̄Lj·

)
dW ∗

dτn,n′
+

( N∑
j=1

γi,j
PMi

∗

P ∗j
λ̄Mj·

)
dPMj

∗

dτn,n′
. (84)

Denoting Γ1 :=
[
γi,j

PMi
∗

P ∗j
λ̄Lj·
]N
i,j=1

and Γ2 :=
[
γi,j

PMi
∗

P ∗j
λ̄Mj·
]N
i,j=1

, and letting ι := [1, 1, . . . , 1]′ be a N × 1

vector of ones, I stack (84) over sectors to obtain the following system of equations:
dPM1

∗

dτn,n′
...

dPMN
∗

dτn,n′

 = −


∑N

j=1
γ1,j

1−τ1,jP
M
1
∗
1{1=n,j=n′}

...∑N
j=1

γN,j
1−τN,jP

M
N
∗
1{N=n,j=n′}

+ Γ1ι
dW ∗

dτn,n′
+ Γ2


dPM1

∗

dτn,n′
...

dPMN
∗

dτn,n′



∴ (I − Γ2)


dPM1

∗

dτn,n′
...

dPMN
∗

dτn,n′

 = −


∑N

j=1
γ1,j

1−τ1,jP
M
1
∗
1{1=n,j=n′}

...∑N
j=1

γN,j
1−τN,jP

M
N
∗
1{N=n,j=n′}

+ Γ1ι
dW ∗

dτn,n′
(85)

where I represents an N ×N identity matrix.

Fact C.4. The matrices Γ1 and Γ2 in (85) is identified.

Proof. In view of Fact B.5, {γi,j}i,j and {PMi
∗}Ni=1 are identified from the observables. Moreover, {λ̄Lj·}Nj=1

and {λ̄Mj· }Nj=1 are identified due to Fact C.3. Hence, both Γ1 and Γ2 in (85) are identified.

To uniquely solve (85) for
{dPMj ∗
dτn,n′

}N
j=1

, I need an additional regularity condition.
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Assumption C.7. The matrix (I − Γ2) is nonsingular.

This assumption guarantees that (I − Γ2) is invertible. Under Assumption C.7, it follows from (85)

that 
dPM1

∗

dτn,n′
...

dPMN
∗

dτn,n′

 = (I − Γ2)−1


−
∑N

j=1
γ1,j

1−τ1,jP
M
1
∗
1{1=n,j=n′}

...

−
∑N

j=1
γN,j

1−τN,jP
M
N
∗
1{N=n,j=n′}

+ (I − Γ2)−1Γ1ι
dW ∗

dτn,n′
. (86)

Observe here that Γ2 is a version of the adjacency matrix capturing the input-output linkages among

sectors (see Fact B.5). Hence, (I − Γ2)−1 can be conceived as a type of the Leontief inverse matrix,

augmented by the source sector’s strategic interactions (i.e., market distortion). For some i 6= n, the

(i, n) entry of this strategic-complementarity-adjusted Leontief inverse can be written as a geometric

sum:

γi,n
PMi

∗

P ∗n
λ̄Mn· +

N∑
j=1

γi,jγj,n
PMi

∗

P ∗j

PMj
∗

P ∗n
λ̄Mj·,λ̄

M
n· +

N∑
j=1

N∑
j′=1

γi,jγj,j′γj′,n
PMi

∗

P ∗j

PMj
∗

P ∗j′

PMj′
∗

P ∗n
λ̄Mj· λ̄

M
j′·λ̄

M
n· + . . . . (87)

This infinite sum expression embodies the so called “strategic complementarities” in firm’s price

setting.(e.g., Nakamura and Steinsson 2010; La’O and Tahbaz-Salehi 2022).114 To gain some intuition

for this, suppose that sector i uses sector n’s (n 6= i) intermediate good directly and indirectly along

the production network. For the sake of brevity, assume in addition that λ̄j·, > 0 for all j ∈ N. When

sector n is subsidized, the reduced input cost stimulates the production in that sector, leading to a lower

sectoral output price index of sector n according to (82). The pass-through ratio is given by λ̄Mn· . This

change in the sector n’s output price index affects the cost index of sector i through multiple channels.

The first term of (87) stands for the first-order spillover effect: the lower price index of sector n directly

reduces the sector i’s input cost. The second term captures the second-order spillover effect coming via

a third sector j. The output price index of sector j decreases as firms in sector j can produce more of

their goods by taking advantage of cheaper input costs. This effect is encapsulated in λ̄j·. This chain of

reductions in input cost takes place along the network. I call this comovement of sectoral cost indices the

macro complementarities.

In general, the sign and magnitude of the macro complementarities are ambiguous, because they are

mediated by the source sector firm’s strategic complementarities, encoded in λ̄j,·, which I call the micro

complementarities.

Example C.4. Consider an economy consisting on three sectors, i.e., sector 1, 2 and 3. Suppose that

the overall strategic complementarity in sector 2 is such that λ̄M2· < 0, and that in sector 3 is λ̄M3· > 0.

Sector 1 purchases input goods from sector 3 directly and indirectly through sector 2. Assume that sector

3 is subsidized. In this case, the corresponding expression for (87) from the sector 1’s viewpoint is given

114The quotation marks are attached to emphasize that in my model firms are not explicitly engaged in strategic interactions
across sectors.
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by

γ1,3
PM1

∗

P ∗3
λ̄M3· + γ1,2γ2,3

PM1
∗

P ∗2

PM2
∗

P ∗3
λ̄M2· λ̄

M
3· .

The first term represents the first-order spillover effect from the subsidized sector. This induces a positive

correlation, as discussed above. The second term dictates the second-order spillover effect coming through

sector 2. On the one hand, the input cost for sector 2 decreases owing to lower sectoral intermediate good

from sector 3. The sectoral price index of sector 2, however, will go up because the competition in sector

2 is such that λ̄M2· < 0. (This is especially the case when the firms’ products are strategic complement

of one another.) Thus, the presence of sector 2, through a higher price index of sector 2’s intermediate

good, partially undermines or may even revert the positive spillover effect from the subsidized sector.

Remark C.3. The literature on New Keynesian models , such as Nakamura and Steinsson (2010) and

La’O and Tahbaz-Salehi (2022) use the strategic complementarities in firm’s price setting to refer to the

relationship between sectoral output indices. A similar observation can be obtained for sectoral output

indices by substituting (83) into (82) to cancel
{ dP ∗j
dτn,n′

}N
j=1

. The intuition retains the same as described

above.

Lemma C.5 (Identification of
dPMi

∗

dτn,n′
). Suppose that Assumptions C.6 and C.7 hold. Then, the value of

dPMi
∗

dτn,n′
is uniquely identified up to dW ∗

dτn,n′
.

Proof. In view of Fact B.5, {γi,j}i,j and {PMi
∗}Ni=1 in (86) are identified from the observables. Moreover,

by Fact C.4, Γ1 and Γ2 are also identified from the observables. Thus I can uniquely identify
{dPMi ∗
dτn,n′

}N
i=1

up to dW ∗

dτn,n′
through (86), as claimed.

Lemma C.6 (Identification of
dP ∗i
dτn,n′

). Suppose that the assumptions required in Lemma C.5 are satisfied.

Then, the value of
dP ∗i
dτn,n′

is identified up to dW ∗

dτn,n′
.

Proof. In light of Lemma C.5, I identify
{dPMi ∗
dτn,n′

}N
i=1

up to dW ∗

dτn,n′
. Substituting these into (82), I can

identify
{ dP ∗i
dτn,n′

}N
i=1

up to dW ∗

dτn,n′
as

dP ∗i
dτn,n′

= λ̄Li·
dW ∗

dτn,n′
+ λ̄Mi·

dPMi
∗

dτn,n′
,

where the identification of λ̄Li· and λ̄Mi· follows from Fact C.3. This proves the claim.

Lemma C.7 (Identification of
dq∗ik
dτn,n′

). Suppose that the assumptions required in Proposition C.2 and

Lemma C.3 are satisfied. Assume moreover that Assumptions C.6 and C.7 hold. Then, the value of
dq∗ik
dτn,n′

is identified up to dW ∗

dτn,n′
.

Proof. In (80), Λ−1
i,1 Λi,2 is identified by Fact C.2, and

dPMi
∗

dτn,n′
is identified up to dW ∗

dτn,n′
by Lemma C.5. Thus,

I can identify the value of
dq∗ik
dτn,n′

up to dW ∗

dτn,n′
, completing the proof.
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C.3.2 Cost Minimization 1: Input Decision

The increment (or decrement) of the output quantity in reaction to the policy change,
dq∗ik
dτn

, pins down a

new production possibility frontier, along which the quantities of labor and material inputs adjust.

Firm k’s cost minimization problem in sector i is formulated as: for given W , PMi and q∗ik,

(`∗ik,m
∗
ik) ∈ arg min

`ik,mik

W`ik + PMi mik

s.t. fi(`ik,mik; zik) ≥ q∗ik.

The associated Lagrange function is

Li(`ik,mik, ξik) := W`ik + PMi mik − ξik
(
fi(`ik,mik; zik)− q∗ik

)
.

In equilibrium, the first order conditions are satisfied at (`ik,mik) = (`∗ik,m
∗
ik):

[`ik] : W ∗ = ξ∗ik
∂fi(·)∗

∂`ik

[mik] : PMi
∗

= ξ∗ik
∂fi(·)∗

∂mik

[ξik] : fi(`
∗
ik,m

∗
ik; zik) = q∗ik,

where ξ∗ik is the marginal cost of production at the given quantity q∗ik. Note that under Assumption 3.5

(i), ξ∗ik equals the average cost: i.e., ξ∗ik =
TC∗ik
q∗ik

where TC∗ik := TCik(W,P
M
i , qik)

∣∣
(W,PMi ,qik)=(W ∗,PMi

∗
,q∗ik)

with TCik(·) denoting, with a slight abuse of notation, the firm’s total cost function. (see also Fact C.1).

Fact C.5 (Identification of λ∗ik). Suppose that Proposition C.2 holds. Then ξ∗ik is identified.

Proof. Applying Proposition C.2, q∗ik is identified. Since TC∗ik is directly observed in data, I can thus

identify ξ∗ik, as desired.

Remark C.4. Two sets of “optimal” labor and material inputs (¯̀∗
ik, m̄

∗
ik) and (`∗ik,m

∗
ik) need to be dis-

tinguished. They reside on the same production possibility frontier, but do not necessarily coincide. It is

the latter that minimizes the total cost of producing q∗ik.

Totally differentiating the first order conditions, one obtains

dW ∗

dτn,n′
=

dξ∗ik
dτn,n′

∂fi(·)∗

∂`ik
+ ξ∗ik

(
∂2fi(·)∗

∂`2ik

d`∗ik
dτn,n′

+
∂2fi(·)∗

∂`ik∂mik

dm∗ik
dτn,n′

)
(88)

dPMi
∗

dτn,n′
=

dξ∗ik
dτn,,n′

∂fi(·)∗

∂mik
+ ξ∗ik

(
∂2fi(·)∗

∂`ikmik

d`∗ik
dτn,n′

+
∂2fi(·)∗

∂m2
ik

dm∗ik
dτn,n′

)
(89)

∂fi(·)∗

∂`ik

d`∗ik
dτn,n′

+
∂fi(·)∗

∂mik

dm∗ik
dτn,n′

=
dq∗ik
dτn,n′

. (90)
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Observe here that

dξ∗ik
dτn,n′

=
d(TC∗ik/q

∗
ik)

dτn,n′

=
1

q∗ik

dTC∗ik
dq∗ik

− TCik
1

(q∗ik)
2

dq∗ik
dτn,n′

=
1

q∗ik

(
∂TCik(·)∗

∂W

dW ∗

dτn,n′
+
∂TCik(·)∗

∂PMi

dPMi
∗

dτn,n′
+
∂TCik(·)∗

∂qik

dq∗ik
dτn,n′

)
− 1

q∗ik

TC∗ik
q∗ik

dq∗ik
dτn,n′

=
1

q∗ik

(
`∗ik

dW ∗

dτn,n′
+m∗ik

dPMi
∗

dτn,n′
+
∂TCik(·)∗

∂qik

dq∗ik
dτn,n′

)
− 1

q∗ik

TC∗ik
q∗ik

dq∗ik
dτn,n′

=
1

q∗ik

(
`∗ik

dW ∗

dτn,n′
+m∗ik

dPMi
∗

dτn,n′
+ ξ∗ik

dq∗ik
dτn,n′

)
− 1

q∗ik
ξ∗ik

dq∗ik
dτn,n′

=
`∗ik
q∗ik

dW ∗

dτn,n′
+
m∗ik
q∗ik

dPMi
∗

dτn,n′
. (91)

where the fourth equality is due to the Shephard lemma, and the fifth one follows from the fact that

under Assumption 3.5 (i), the marginal cost equals average cost.

From (88) and (91),

dW ∗

dτn,n′
=

(
`∗ik
q∗ik

dW ∗

dτn,n′
+
m∗ik
q∗ik

dPMi
∗

dτn,n′

)
∂fi(·)∗

∂`ik
+ ξ∗ik

(
∂2fi(·)∗

∂`2ik

d`∗ik
dτn,n′

+
∂2fi(·)∗

∂`ik∂mik

dm∗ik
dτn,n′

)
∴ ξ∗ik

∂2fi(·)∗

∂`2ik

d`∗ik
dτn,n′

+ ξ∗ik
∂2fi(·)∗

∂`ik∂mik

dm∗ik
dτn,n′

=

(
1−

`∗ik
q∗ik

∂fi(·)∗

∂`ik

)
dW ∗

dτn,n′
−
m∗ik
q∗ik

∂fi(·)∗

∂`ik

dPMi
∗

dτn,n′
. (92)

From (89) and (91),

dPMi
∗

dτn,n′
=

(
`∗ik
q∗ik

dW ∗

dτn,n′
+
m∗ik
q∗ik

dPMi
∗

dτn,n′

)
∂fi(·)∗

∂mik
+ ξ∗ik

(
∂2fi(·)∗

∂`ikmik

d`∗ik
dτn,n′

+
∂2fi(·)∗

∂m2
ik

dm∗ik
dτn,n′

)
∴ ξ∗ik

∂2fi(·)∗

∂`ik∂mik

d`∗ik
dτn,n′

+ ξ∗ik
∂2fi(·)∗

∂m2
ik

dm∗ik
dτn,n′

= −
`∗ik
q∗ik

∂fi(·)∗

∂mik

dW ∗

dτn,n′
+

(
1−

m∗ik
q∗ik

∂fi(·)∗

∂mik

)
dPMi

∗

dτn,n′
. (93)

The set of equations (90), (92) and (93), coupled with (80), can be summarized into a matrix form:
ξ∗ik

∂2fi(·)∗
∂`2ik

ξ∗ik
∂2fi(·)∗
∂`ik∂mik

ξ∗ik
∂2fi(·)∗
∂`ik∂mik

ξ∗ik
∂2fi(·)∗
∂m2

ik
∂fi(·)∗
∂`ik

∂fi(·)∗
∂mik


 d`∗ik
dτn,n′
dm∗ik
dτn,n′

 =


1− `∗ik

q∗ik

∂fi(·)∗
∂`ik

−m∗ik
q∗ik

∂fi(·)∗
∂`ik

− `∗ik
q∗ik

∂fi(·)∗
∂mik

1− m∗ik
q∗ik

∂fi(·)∗
∂mik

λ̄Lik λ̄Mik


 dW ∗

dτn,n′
dPMi

∗

dτn,n′

 . (94)

Notice that under Assumption 3.5 (i), (92) and (93) are essentially identical. Hence, the system of

equations (94) simplifies to:

[
ξ∗ik

∂2fi(·)∗
∂`2ik

ξ∗ik
∂2fi(·)∗
∂`ik∂mik

∂fi(·)∗
∂`ik

∂fi(·)∗
∂mik

][
d`∗ik
dτn
dm∗ik
dτn

]
=

[
1− `∗ik

q∗ik

∂fi(·)∗
∂`ik

−m∗ik
q∗ik

∂fi(·)∗
∂`ik

λ̄Lik λ̄Mik

] dW ∗

dτn,n′
dPMi

∗

dτn,n′

 . (95)

It is immediate to show that (95) can be solved for
d`∗ik
dτn

and
dm∗ik
dτn

as soon as acknowledging the
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following fact.

Fact C.6. Suppose that Assumption 3.5 holds. Then, the matrix[
ξ∗ik

∂2fi(·)∗
∂`2ik

ξ∗ik
∂2fi(·)∗
∂`ik∂mik

∂fi(·)∗
∂`ik

∂fi(·)∗
∂mik

]

is nonsingular, i.e., invertible.

Proof. By Assumption 3.5 (i), it holds that for each firm k, traced by zik ∈ Zi,

∂fi(·)
∂`ik

`ik +
∂fi(·)
∂mik

mik = qik

and

∂2fi(·)
∂`2ik

`ik +
∂2fi(·)
∂`ik∂mik

mik = 0, (96)

for any (qik, `ik,mik) ∈ {(q, `,m) ∈ Si ×Li ×Mi | q = fi(`,m, zik)}.
Then the determinant of the matrix in question is given by∣∣∣∣∣∣ξ

∗
ik
∂2fi(·)∗
∂`2ik

−ξ∗ik
∂f2
i (·)∗

∂`ik∂mik
∂fi(·)∗
∂`ik

∂fi(·)∗
∂mik

∣∣∣∣∣∣ =

∣∣∣∣∣∣−ξ
∗
ik
m∗ik
`∗ik

∂2fi(·)∗
∂`ik∂`ik

ξ∗ik
∂f2
i (·)∗

∂`ik∂mik
q∗ik
`∗ik
− m∗ik

`∗ik

∂fi(·)∗
∂mik

∂fi(·)∗
∂mik

∣∣∣∣∣∣
= −ξ∗ik

m∗ik
`∗ik

∂fi(·)∗

∂mik

∂2fi(·)∗

∂`ik∂`ik
− ξ∗ik

(
q∗ik
`∗ik
−
m∗ik
`∗ik

∂fi(·)∗

∂mik

)
∂f2

i (·)∗

∂`ik∂mik

= −ξ∗ik
q∗ik
`∗ik

∂f2
i (·)∗

∂`ik∂mik

< 0,

where the last strict inequality is a consequence of Assumptions 3.5. This means that the matrix is

nonsingular, as claimed.

In light of Fact C.6, the system of equations (95) can be uniquely solved for
d`∗ik
dτn

and
dm∗ik
dτn

. Towards

the identification of
d`∗ik
dτn,n′

and
dm∗ik
dτn,n′

, I need to recover the first- and second-order partial derivatives of

the firm-level production function. my approach heavily draws from Gandhi et al. (2019), and exploits

the Hicks-neutral productivity of the firm-level production function as assumed in (13). For the ease of

reference, this is summarized below.

Assumption C.8 (Hicks-neutral Productivity Shocks). For each i ∈ N and for each k ∈ Ni, the firm-

level productivity shifter zik is Hicks-neutral.

The detail of the identification argument is relegated to Appendix C.4. Provided that the first- and

second-order derivatives of the firm-level production functions are recovered, I are ready to identify the

changes in labor and material inputs in response to changes in subsidies.
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Lemma C.8 (Identification of
d`∗ik
dτn,n′

and
dm∗ik
dτn,n′

). Suppose that the assumptions required in Lemma C.7

are satisfied. Assume moreover that Assumption C.8 holds. Then, the values of
d`∗ik
dτn

and
dm∗ik
dτn

are uniquely

identified up to dW ∗

dτn,n′
.

Proof. Using Fact C.6, I can write (95) uniquely as d`∗ik
dτn,n′
dm∗ik
dτn,n′

 =

[
ξ∗ik

∂2fi(·)∗
∂`2ik

ξ∗ik
∂2fi(·)∗
∂`ik∂mik

∂fi(·)∗
∂`ik

∂fi(·)∗
∂mik

]−1 [
1− `∗ik

q∗ik

∂fi(·)∗
∂`ik

−m∗ik
q∗ik

∂fi(·)∗
∂`ik

λ̄Lik λ̄Mik

] dW ∗

dτn,n′
dPMi

∗

dτn,n′


= −

(
ξ∗ik
q∗ik
`∗ik

∂2fi(·)∗

∂`ik∂mik

)−1
 ∂fi(·)∗

∂mik
−ξ∗ik

∂2fi(·)∗
∂`ik∂mik

−∂fi(·)∗
∂`ik

ξ∗ik
∂2fi(·)∗
∂`2ik

[1− `∗ik
q∗ik

∂fi(·)∗
∂`ik

−m∗ik
q∗ik

∂fi(·)∗
∂`ik

λ̄Lik λ̄Mik

] dW ∗

dτn,n′
dPMi

∗

dτn,n′
.


(97)

First, q∗ik and ξ∗ik are identified by Proposition C.2 and Fact C.5, respectively. Next, the partial

derivatives of the production function are identified by Lemma C.11 in Appendix C.4. Finally, the total

derivatives
dPMi

∗

dτn,n′
and

dq∗ik
dτn,n′

are identified up to dW ∗

dτn,n′
through Lemmas C.5 and C.7, respectively. Hence,

I also can uniquely identify
d`∗ik
dτn,n′

and
dm∗ik
dτn,n′

up to dW ∗

dτn,n′
, as desired.

Remark C.5. It is worth noticing that (97) can be decomposed into two terms as follows: d`∗ik
dτn,n′
dm∗ik
dτn,n′

 = −
(
ξ∗ik
q∗ik
`∗ik

∂2fi(·)∗

∂`ik∂mik

)−1
 ∂fi(·)∗

∂mik
−ξ∗ik

∂2fi(·)∗
∂`ik∂mik

−∂fi(·)∗
∂`ik

ξ∗ik
∂2fi(·)∗
∂`2ik

[1− `∗ik
q∗ik

∂fi(·)∗
∂`ik

−m∗ik
q∗ik

∂fi(·)∗
∂`ik

λ̄Lik λ̄Mik

]
︸ ︷︷ ︸

firm k’s input elasticities

 dW ∗

dτn,n′
dPMi

∗

dτn,n′


︸ ︷︷ ︸

policy shocks

.

The leading three terms jointly account for the responsiveness of the firm’s labor and material input

decisions to the changes in wage and the cost index due to a policy shift, which are given by the last term.

The former can be identified and thus estimated independently the latter. That is, once the former is

obtained, (97) can be viewed as a “reduced-form” relationship between the changes of labor and material

inputs and the those of wage and material cost index.

The comparative statics in this section so far have been identified up to dW ∗

dτn,n′
. Next, to attain the

full identification of the comparative statics, I aim to identify dW ∗

dτn,n′
from the observables by making use

of the labor market clearing condition (22). First, let

Dik =

[
dik,11 dik,12

dik,21 dik,22

]

be the 2× 2 matrix expressing the firm’s input elasticities’ part of (97): i.e.,

Dik := −
(
ξ∗ik
q∗ik
`∗ik

∂2fi(·)∗

∂`ik∂mik

)−1
 ∂fi(·)∗

∂mik
−ξ∗ik

∂2fi(·)∗
∂`ik∂mik

−∂fi(·)∗
∂`ik

ξ∗ik
∂2fi(·)∗
∂`2ik

[1− `∗ik
q∗ik

∂fi(·)∗
∂`ik

−m∗ik
q∗ik

∂fi(·)∗
∂`ik

λ̄Lik λ̄Mik .

]
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Then, I can write (97) as

d`∗ik
dτn,n′

= dik,11
dW ∗

dτn,n′
+ dik,12

dPMi
∗

dτn,n′
, (98)

dm∗ik
dτn,n′

= dik,21
dW ∗

dτn,n′
+ dik,22

dPMi
∗

dτn,n′
. (99)

Next, observe that from (86), I can write

dPMi
∗

dτn,n′
= ϑi,1 + ϑi,2

dW ∗

dτn,n′
, (100)

where ϑi,1 and ϑi,2 are the i-th element of −(I − Γ2)−1[
γ1,n′

1−τ1,n′
PM1

∗
1{n=1}, . . . ,

γN,n′
1−τN,n′

PMN
∗
1{n=N}]

′ and

(I − Γ2)−1Γ1ι, respectively.

Therefore, upon substituting (100) into (98), I arrive at

d`∗ik
dτn,n′

= dik,11
dW ∗

dτn,n′
+ dik,12

(
ϑi,1 + ϑi,2

dW ∗

dτn,n′

)
= ϑi,1dik,12 + (dik,11 + ϑi,2dik,12)

dW ∗

dτn,n′
. (101)

To ensure the point identification, I maintain the following regularity condition.

Assumption C.9 (Regularity Condition).
∑N

i=1

∑Ni
k=1(dik,11 + ϑi,2dik,12) 6= 0.

The implication of this assumption is studied in Remark C.6.

Lemma C.9 (Identification of dW ∗

dτn,n′
). Suppose that the assumptions required in Lemma C.8 are satisfied.

Assume moreover that Assumption C.9 holds. Then, the value of dW ∗

dτn,n′
is identified.

Proof. Totally differentiating the labor market clearing condition (22), I have

dL

dτn,n′
=

N∑
i=1

Ni∑
k=1

d`∗ik
dτn,n′

.

Since here labor supply is inelastic, it then must be dL
dτn,n′

= 0, so that

0 =
N∑
i=1

Ni∑
k=1

d`∗ik
dτn,n′

. (102)

Substituting (101) for
d`∗ik
dτn,n′

into (102) leads us to

0 =
N∑
i=1

Ni∑
k=1

{
ϑi,1dik,12 + (dik,11 + ϑi,2dik,12)

dW ∗

dτn,n′

}
, (103)
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which, under Assumption C.9, can be rearranged to

dW ∗

dτn,n′
= −

∑N
i=1

∑Ni
k=1 ϑi,1dik,12∑N

i=1

∑Ni
k=1(dik,11 + ϑi,2dik,12)

.

Given that ϑi,1, ϑi,2, dik,11, and dik,12 are all identified, this expression identifies the value of dW ∗

dτn,n′
,

proving the claim.

Remark C.6. Since (103) is essentially an identity (i.e., the labor market clearing condition), when

Assumption C.9 is violated, it should also holds that

N∑
i=1

Ni∑
k=1

ϑi,1dik,12 = 0

∴
N∑
i=1

ϑi,1

Ni∑
k=1

dik,12 = 0,

where the left-hand side allows for an interpretation as an weighted average of an within-sector com-

petitiveness measure
∑Ni

k=1 dik,12 weighted by the location ϑi,1 of that sector on the production network.

Hence, this indicates asymmetry either among firms or sectors.

Proposition C.4 (Full Identification of the Comparative Statics). Suppose that the assumptions re-

quired in Lemma C.9 are satisfied. Then all the relevant comparative statics are fully identified from the

observables.

Proof. Under the maintained assumptions, I can invoke Lemmas C.5, C.6, C.7 and C.8 to identify,

respectively,
dPMi

∗

dτn,n′
,

dP ∗i
dτn,n′

,
dq∗ik
dτn,n′

,
d`∗ik
dτn,n′

and
dm∗ik
dτn,n′

up to dW ∗

dτn,n′
. Meanwhile, it is possible to recover dW ∗

dτn,n′

from observables as studied in Lemma C.9. Thus, I can identify all the relevant comparative statics, such

as
dPMi

∗

dτn,n′
,

dP ∗i
dτn,n′

,
dq∗ik
dτn,n′

,
d`∗ik
dτn,n′

and
dm∗ik
dτn,n′

, from observables, as claimed.

Observe that as far as the structure of the demand function is concerned, both perfectly competitive

markets and monopolistic markets can be viewed as special cases of oligopolistic markets. Notice moreover

that an economy without the production network can be embedded into the current framework as an

extreme scenario, where the off-diagonal elements of the input-output matrix are set to zero . These

insights take us to the following corollary.

Corollary C.2. Suppose that the assumptions required in Lemma C.9 are satisfied. Then, i) if the market

is perfectly competitive, a version of Proposition C.4 holds with letting ∂ψik(·)
∂qik′

= 0 for all k, k′ ∈ Ni with

the sectoral equilibrium concepts appropriately modified; ii) if the market is monopolistically competitive,

a version of Proposition C.4 holds with letting ∂ψik(·)
∂qik′

= 0 for all k′ 6= k ∈ Ni with the sectoral equilibrium

concepts appropriately modified; and iii) if the sectoral network is absent, a version of Proposition C.4

holds with letting γi,j = 0 for all i 6= j ∈ N.
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C.3.3 Cost Minimization 2: Derived Demand for Sectoral Goods

Next, when the change in material input
dm∗ik
dτn

is determined, the derived demand for sectoral goods are

in turn adjusted so as to minimize the expenditure for purchase of those goods. Totally differentiating

(55), I have

dm∗ik,j
dτn,n′

=

(
1

1− τn,n′
1{i=n,j=n′} +

1

PMi
∗
dPMi

∗

dτn,n′
− 1

P ∗j

dP ∗j
dτn,n′

+
1

m∗ik

dm∗ik
dτn,n′

)
m∗ik,j , (104)

where 1{i=n,j=n′} is an indicator function that takes one if i = n and j = n′, and zero otherwise.

Proposition C.5 (Identification of
dm∗ik,j
dτn,n′

). Suppose that the assumptions required in Proposition C.4

are satisfied. Assume moreover that Assumption B.4 holds. Then for each i ∈ N and for each k ∈ Ni,{dm∗ik,j
dτn,n′

}N
j=1

are identified from the observables.

Proof. First, in view of Facts B.4 and B.5, m∗ik,j and PMi
∗

are obtained from the data, respectively.

Next, owing to Proposition C.4, the total derivatives
dPMi

∗

dτn,n′
,

dP ∗i
dτn,n′

and
dm∗ik
dτn,n′

are all identified from the

observables. Hence,
dm∗ik,j
dτn,n′

is identified through (104), as desired.

C.4 Recovering the Second-Order Partial Derivatives of the Firm-Level Production

Functions

The goal of this section is to identify the second order derivatives of fi with respect to `ik and mik. First

of all, observe that under Assumption C.8, there exits a function gi : Li ×Mi → R such that

fi(`ik,mik; zik) = zikgi(`ik,mik), (105)

for all (`ik,mik, zik) ∈ Li ×Mi ×Zi. I define g̃i : L̃i × M̃i → R such that

f̃i(˜̀
ik, m̃ik; z̃ik) = z̃ik + g̃i(˜̀

ik, m̃ik). (106)

Our identification strategy is based on the following relationships between the partial derivatives of

g̃i and those of fi.

Fact C.7. Under Assumption C.8, it holds that for all (`ik,mik, zik) ∈ Li ×Mi ×Zi,

(i) ∂f̃i(·)
∂ ˜̀
ik

= ∂g̃i(·)
∂ ˜̀
ik

and ∂f̃i(·)
∂m̃ik

= ∂g̃i(·)
∂m̃ik

;

(ii) ∂fi(·)
∂`ik

= ∂g̃i(·)
∂ ˜̀
ik

fi(·)
`ik

and ∂fi(·)
∂mik

= ∂g̃i(·)
∂m̃ik

fi(·)
mik

;

(iii) ∂2fi(·)
∂`2ik

= fi(·)
`2ik

{
∂2g̃i(·)
∂ ˜̀2
ik

+
(
∂g̃i(·)
∂ ˜̀
ik

)2
+ ∂g̃i(·)

∂ ˜̀
ik

}
, ∂2fi(·)

∂m2
ik

= fi(·)
m2
ik

{
∂2g̃i(·)
∂m̃2

ik
+
(
∂g̃i(·)
∂m̃ik

)2
+ ∂g̃i(·)

∂m̃ik

}
and ∂2fi(·)

∂`ik∂mik
=

fi(·)
`ikmik

(
∂2g̃i(·)
∂ ˜̀
ik∂m̃ik

+ ∂g̃i(·)
∂ ˜̀
ik

∂g̃i(·)
∂m̃ik

)
,

where fi(·) := fi(`ik,mik; zik) and g̃i(·) := g̃i(˜̀
ik, m̃ik).
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Proof. (i) This immediately follows from taking (partial) derivatives of the both hand sides of (106) with

respect to `ik and mik, respectively.

(ii) First, by definition

gi(`ik,mik) = exp
{
g̃i(˜̀

ik, m̃ik)
}
,

so that the partial derivative with respect to `ik reads

∂gi(·)
∂`ik

= exp
{
g̃i(·)

}∂g̃i(·)
∂ ˜̀
ik

d ln `ik
d`ik

=
∂g̃i(·)
∂ ˜̀
ik

gi(·)
`ik

.

Similarly, it holds that

∂gi(·)
∂mik

=
∂g̃i(·)
∂m̃ik

gi(·)
mik

.

Now, it follows from (105) that ∂fi(·)
∂`ik

= zik
∂gi(·)
∂`ik

and ∂fi(·)
∂mik

= zik
∂gi(·)
∂mik

. Thus I have

∂fi(·)
∂`ik

= zik
∂g̃i(·)
∂ ˜̀
ik

gi(·)
`ik

=
∂g̃i(·)
∂ ˜̀
ik

fi(·)
`ik

,

and

∂fi(·)
∂mik

=
∂g̃i(·)
∂m̃ik

fi(·)
mik

,

(iii) Taking the (partial) derivatives of the result of Part (ii),

∂2fi(·)
∂`2ik

=
∂2g̃i(·)
∂ ˜̀2
ik

fi(·)
`2ik

+
∂g̃i(·)
∂ ˜̀
ik

∂fi(·)
∂`ik

1

`ik
− ∂g̃i(·)

∂ ˜̀
ik

fi(·)
`2ik

=
fi(·)
`2ik

{
∂2g̃i(·)
∂ ˜̀2
ik

+
∂g̃i(·)
∂ ˜̀
ik

`ik
fi(·)

∂fi(·)
∂`ik

− ∂g̃i(·)
∂ ˜̀
ik

}
=
fi(·)
`2ik

{
∂2g̃i(·)
∂ ˜̀2
ik

+

(
∂g̃i(·)
∂ ˜̀
ik

)2

− ∂g̃i(·)
∂ ˜̀
ik

}
,

where the last equality is again due to Part (ii) of this fact.

An analogous argument applies to ∂2fi(·)
∂m2

ik
as well.

Next, differentiating Part (ii) also yields that

∂2fi(·)
∂`ik∂mik

=
∂2g̃i(·)
∂ ˜̀
ik∂m̃ik

fi(·)
`ikmik

+
∂g̃i(·)
∂ ˜̀
ik

∂fi(·)
∂mik

1

`ik
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=
fi(·)
`ikmik

{
∂2g̃i(·)
∂ ˜̀
ik∂m̃ik

+
∂g̃i(·)
∂ ˜̀
ik

mik

fi(·)
∂fi(·)
∂mik

}
=

fi(·)
`ikmik

{
∂2g̃i(·)
∂ ˜̀
ik∂m̃ik

+
∂g̃i(·)
∂ ˜̀
ik

∂g̃i(·)
∂m̃ik

}
,

where I once again use Part (ii) to derive the last equality. This completes the proof.

The identification results of Gandhi et al. (2019) rest on Fact C.7 (i). I further leverage insights from

Fact C.7 (ii) and (iii). In particular, observe that looking at (ii) in equilibrium,

∂fi(·)∗

∂`ik
=
∂g̃i(·)∗

∂ ˜̀
ik

fi(`
∗
ik,m

∗
ik)

`∗ik

=
∂g̃i(·)∗

∂ ˜̀
ik

q∗ik
`∗ik
,

where the second equality follows from Proposition C.2. Likewise,

∂fi(·)∗

∂mik
=
∂g̃i(·)∗

∂m̃ik

q∗ik
m∗ik

.

Moreover, invoking (iii) in equilibrium, I have

∂2fi(·)∗

∂`2ik
=

q∗ik
(`∗ik)

2

{
∂2g̃i(·)∗

∂ ˜̀2
ik

+

(
∂g̃i(·)∗

∂ ˜̀
ik

)2

− ∂g̃i(·)∗

∂ ˜̀
ik

}
, (107)

and also

∂2fi(·)∗

∂`ik∂mik
=

q∗ik
`∗ikm

∗
ik

{
∂2g̃i(·)∗

∂ ˜̀
ik∂m̃ik

+

(
∂g̃i(·)∗

∂ ˜̀
ik

)(
∂g̃i(·)∗

∂m̃ik

)}
. (108)

Since q∗ik can be identified from Proposition C.2, it remains to identify the values of the second-

order derivatives of g̃i(·) with respect to ˜̀
ik and m̃ik. To this end, I follow Gandhi et al. (2019) in

nonparametrically identifying the first-oder partial derivatives of g̃(·) as a function of ˜̀
ik and m̃ik.

Remark C.7. Although the equilibrium values ∂g̃i(·)∗
∂ ˜̀
ik

and ∂g̃i(·)∗
∂m̃ik

can be recovered from the observables

under Assumption 3.5 (i) (see Proposition C.1), I still need to identify ∂g̃i(·)
∂ ˜̀
ik

and ∂g̃i(·)
∂m̃ik

as a function of

˜̀
ik and m̃ik over the entire support L̃i × M̃i, so that the second-order derivatives of g̃i(·) can be derived.

The identification equations for the second-order derivatives are based on the one-step profit max-

imization set out in Appendix C.3.1. Under Assumption C.8, multiplying (76) by `ik and dividing by

pikqik lead to

mrik
pik

∂fi(·)
∂`ik

`ik
qik

=
W`ik
pikqik

∴
1

µik

∂g̃i(·)
∂ ˜̀
ik

= s`ik,
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where s`ik := W`ik
pikqik

is the labor cost relative to the revenue. Moreover, I use the fact that the marginal

revenue equals to the marginal cost in equilibrium, thereby implying µik := pik
mcik

= pik
mrik

. Taking the

logarithm of this expression, I have

ln s`ik = ln
∂g̃i(·)
∂ ˜̀
ik

− lnµik. (109)

However, in general this relationship cannot be directly fed into the data when the output market is im-

perfectly competitive, because firm-level markup have to be identified and thus estimated simultaneously

(Kasahara and Sugita 2020). Nevertheless, I emphasize that under Assumption 3.5 (i), µik is recovered

in advance of solving (109) for the first-order derivative of g̃i with respect to ˜̀
ik (Fact C.1). Taking stock

of this, I adopt the same empirical specification as Gandhi et al. (2019):

s̃`,µ̃ik = ln E`i + ln
∂g̃i

∂ ˜̀
ik

(˜̀
ik, m̃ik)− ε̃`ik, (110)

where s̃`,µ̃ik := ln s`ik + lnµik can readily be calculated from the data, and ε̃`ik is a measurement error with

E[ε̃`ik | ˜̀
ik, m̃ik] = 0. The measurement error ε̃`ik captures any unmodeled, non-systematic noise both in

s`ik and µik, and is associated with the constant E`i through E`i = E[exp{ε̃`ik}]. Inclusion of the mean E`i
is based on the suggestion made in Gandhi et al. (2019).

Our identification result is based on Gandhi et al. (2019), which is summarized in the following lemma

for the sake of completion.

Lemma C.10 (Theorem 2 of Gandhi et al. (2019)). Suppose that Assumptions 3.5 and C.8 hold. Then,

the share regression (110) identifies both the labor elasticity and material elasticity of the log-production

function for all (˜̀
ik, m̃ik) ∈ L̃i × M̃i.

Proof. First, I start by writing (110) as

s̃`,µ̃ik = lnD`
ik(

˜̀
ik, m̃ik)− ε̃`ik, (111)

where lnD`
ik(

˜̀
ik, m̃ik) := ln E`i +ln ∂g̃i

∂ ˜̀
ik

(˜̀
ik, m̃ik). I can nonparametrically identify lnD`

ik(
˜̀
ik, m̃ik) accord-

ing to

lnD`
ik(

˜̀
ik, m̃ik) = E

[
s̃`,µ̃ik |˜̀ik, m̃ik

]
for all (˜̀

ik, m̃ik) ∈ L̃i × M̃i. The error term ε̃`ik is identified through the specification (111):

ε̃`ik = lnD`
ik(

˜̀
ik, m̃ik)− s̃`,µ̃ik (112)

which in turn identifies the mean E`i :

E`i = E
[

exp{ε̃`ik}
]

(113)

Next, plug these back into the the definition of lnD`
ik, I identify the log-labor input elasticity of the
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log-production function:

ln
∂g̃i

∂ ˜̀
ik

(˜̀
ik, m̃ik) = lnD`

ik(
˜̀
ik, m̃ik)− ln E`i

= ln
D`
ik(

˜̀
ik, m̃ik)

E`i
,

yielding

∂g̃i(˜̀
ik, m̃ik)

∂ ˜̀
ik

=
D`
ik(

˜̀
ik, m̃ik)

E`i
(114)

for all (˜̀
ik, m̃ik) ∈ L̃i × M̃i. The exact same argument holds for the log-material input elasticity of the

log-production function ∂g̃i(·)
∂m̃ik

, completing the proof.

Remark C.8. Lemma C.10 identifies the log-production function for the entire support L̃i× M̃i beyond

the subspace spanned by the equilibrium relations (Gandhi et al. 2019; Pan 2022). Thus from this result

I can also identify partial derivatives of g̃i of arbitrary order, as exemplified in Corollary C.3.

Corollary C.3. The second-order derivatives of log-production function with respect to log-labor and

log-material inputs, i.e., ∂2g̃i(·)
∂ ˜̀2
ik

, ∂2g̃i(·)
∂m̃2

ik
, and ∂2g̃i(·)

∂ ˜̀
ikm̃ik

, are nonparametrically identified for all (˜̀
ik, m̃ik) ∈

L̃i × M̃i.

Now I prove that it is possible to identify the values of the second-order derivative of the production

function corresponding to the equilibrium labor and material inputs.

Lemma C.11. Suppose that the assumptions required in Proposition C.2 and Lemma C.10 are satisfied.

The values of the second-order derivatives of the production function at equilibrium are identified from

the observables.

Proof. Using Fact C.7 (iii) at the equilibrium (observed) labor `∗ik and material m∗ik inputs, I obtain

(107) and (108). Here, q∗ik can be recovered in view of Proposition C.2. Moreover, Lemma C.10 identifies

the value of ∂g̃i(·)
∂ ˜̀
ik

and ∂g̃i(·)
∂m̃ik

at the equilibrium values of inputs (˜̀∗
ik, m̃

∗
ik) are identified, while Corollary

C.3 informs us of the equilibrium values of ∂2g̃i(·)
∂ ˜̀2
ik

and ∂2g̃i(·)
∂ ˜̀
ik∂m̃ik

. The equilibrium value of ∂2g̃i(·)
∂m̃2

ik
can be

retained through a similar argument. Hence, by tracing (107) and (108), I can recover the values of the

second-order derivatives of the production function at equilibrium, as claimed.

Remark C.9. Lemma C.11 only identifies the values of the second-order derivatives of the firm-level

production function at the equilibrium level of labor and material inputs, while being silent about the

values at different (counterfactual) values of these inputs. This is because I lack the identification of the

production function fi(·) over the entire support; my approach instead rests on the knowledge about the

value of equilibrium quantity, given by Proposition C.2. The punchline is that as far as the identification

of (28) is concerned, the knowledge about the entire production function is not needed, which obviates

additional assumptions.
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C.5 Identification of the Object of Interest

Theorem C.1 (Identification of dYi(s)
ds ). Suppose that the assumptions required in Proposition C.5 are

satisfied. Then, the value of dYi(s)
ds is identified from the observables for all s ∈ [τ0

n,n′ , τ
1
n,n′ ] ⊆ T .

Proof. Provided that Proposition C.5 holds, the value of dYi(s)ds evaluated at a given point in [τ0
n,n′ , τ

1
n,n′ ] is

identified according to (56). I can repeat the same argument for each point in the region [τ0
n,n′ , τ

1
n,n′ ] ⊆ T ,

thereby recovering the function dYi(s)
ds for all s ∈ [τ0

n,n′ , τ
1
n,n′ ] ⊆ T .

Corollary C.4 (Identification of the Object of Interest). Suppose that the assumptions required in The-

orem C.1 are satisfied. Then, the object of interest (24) is identified from the observables.

Proof. In light of (27), I can write

N∑
i=1

Yi(τ
1)−

N∑
i=1

Yi(τ
0) =

N∑
i=1

∫ τ1
n,n′

τ0
n,n′

dYi(s)

ds
ds.

Here, it holds from Theorem C.1 that for each i ∈ N, the function dYi(s)
ds is identified over [τ0

n,n′ , τ
1
n,n′ ] ⊆ T .

Therefore, by integrating the function dYi(s)
ds over this region, and adding it up over all sectors, I can recover

the left-hand side (i.e., the object of interest (24)), as desired.

Proof of Theorem 5.1. The argument expanded so far continues to hold when sector-input-specific

subsidy τn,n′ is replaced by sector-specific one τn. For example, the expression (83) now reads:

dPMi
∗

dτn
= − 1

1− τn
PMi

∗
1{i=n} +

N∑
j=1

γi,j
PMi

∗

P ∗j

dP ∗j
dτn,n′

,

where 1{i=n} equals one if i = n, and zero otherwise. It is immediate to show a version of the result of

Corollary C.4 for this case. This observation establishes the theorem.

�

D Estimation Strategies

D.1 Firm-Level Quantities & Prices

To estimate φ̃i(·) in Step 1 of Lemma C.1, I consider the second-order polynomial regression specifica-

tion:115 namely,

r̃ik = bi,0 + bi,1 ˜̀
ik + bi,2m̃ik + bi,3 ˜̀2

ik + bi,4m̃
2
ik + bi,5 ˜̀

ikm̃ik + η̃ik

= x̃ikbi + η̃ik, (115)

115Since the identification argument exploits the first-order derivatives of the function φ̃i(·), the specification has to be an
order of no less than one. my choice of the second-order approximation gives a margin of flexible fit for the derivatives.
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where x̃ik := [˜̀ik, m̃ik, ˜̀2
ik, m̃

2
ik,

˜̀
ikm̃ik]

′ and bi := [bi,0, bi,1, bi,2, bi,3, bi,4, bi,5]′. Stacking in matrix form, I

obtain

r̃i = x̃ibi + η̃i,

where r̃i := [r̃i1, . . . , r̃iNi ]
′, and and thus the ordinary least square (OLS) estimator is given by

b̂i = (x̃′ix̃i)
−1x̃′ir̃i.

Hence, the fitted value of the log-revenue r̃ik is

ˆ̃
φi(x̃ik) := x̃ikb̂i.

Moreover, given the estimator b̂i, the specification (115) naturally gives rise to the estimator for the

first-order partial derivatives of φ̃i(·) with respect to ˜̀
ik and m̃ik:

∂̂φ̃i

∂ ˜̀
ik

(˜̀
ik, m̃ik) := b̂i,1 + 2b̂i,3 ˜̀

ik + b̂i,5m̃ik

∂̂φ̃i
∂m̃ik

(˜̀
ik, m̃ik) := b̂i,2 + 2b̂i,4m̃ik + b̂i,5 ˜̀

ik.

D.2 Second-Order Derivatives of the Firm-Level Production Function

As proposed in Gandhi et al. (2019), my nonparametric estimators are based on approximating the share

regression (111) by a complete polynomial of degree two, and starts from solving the following least

square formula:

ζ̂ ∈ arg min
ζ◦

Ni∑
k=1

{
s̃`,µ̃ik − ln

{
ζ◦i,0 + ζ◦i,1

˜̀
ik + ζ◦i,2m̃ik + ζ◦i,3

˜̀2
ik + ζ◦i,4m̃

2
ik + ζ◦i,5

˜̀
ikm̃ik

}}2

.

The solution to this minimization problem ζ̂ gives rise to an estimator for D`
ik(·):

D̂`
ik(

˜̀
ik, m̃ik) := ζ̂i,0 + ζ̂i,1 ˜̀

ik + ζ̂i,2m̃ik + ζ̂i,3 ˜̀2
ik + ζ̂i,4m̃

2
ik + ζ̂i,5 ˜̀

ikmik.

This, in conjunction (112) and (113), motivates the plug-in estimators for εik and Ei:

ε̂`ik := ln D̂`
ik(

˜̀
ik, m̃ik)− s̃`,µ̃ik ,

and

Ê`i :=
1

Ni

Ni∑
k=1

exp{ε̂ik},

respectively. Based on (114), the estimator for the first-order derivative of the log-production function
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with respect to log-labor input is thus given by

∂̂g̃i

∂ ˜̀
ik

(˜̀
ik, m̃ik) :=

D̂`
ik(

˜̀
ik, m̃ik)

Ê`i

=
1

Ê`i

(
ζ̂i,0 + ζ̂i,1 ˜̀

ik + ζ̂i,2m̃ik + ζ̂i,3 ˜̀2
ik + ζ̂i,4m̃

2
ik + ζ̂i,5 ˜̀

ikm̃ik

)
.

From this, I can also define the estimators for the second-order derivatives of log-production function

with respect to log-labor and log-material inputs:

∂̂2g̃i

∂ ˜̀2
ik

(˜̀
ik, m̃ik) :=

1

Ê`i

{
(ζ̂i,1 + 2ζ̂i,3)˜̀

ik + ζ̂i,5m̃ik

}
,

∂̂2g̃i

∂ ˜̀
ikm̃ik

(˜̀
ik, m̃ik) :=

1

Ê`i

{
(ζ̂i,2 + 2ζ̂i,4)m̃ik + ζ̂i,5 ˜̀

ik

}
.

Note that ∂̂2g̃i
∂m̃2

ik
(˜̀
ik, m̃ik) can be analogously defined by applying the same argument as above to the share

regression with respect to material input m̃ik.

Guided by the identification result (Lemma C.11), the estimates for the equilibrium values of the

second-order derivatives of the production functions are given by

̂∂2f(`∗ik,m
∗
ik)

∂`2ik
=

q∗ik
(`∗ik)

2

{
∂̂2g̃i

∂ ˜̀2
ik

(˜̀∗
ik, m̃

∗
ik) +

(
∂̂g̃i

∂ ˜̀
ik

(˜̀∗
ik, m̃

∗
ik)

)2

− ∂̂g̃i

∂ ˜̀
ik

(˜̀∗
ik, m̃

∗
ik)

}
,

and

̂∂2f(`∗ik,m
∗
ik)

∂`ik∂mik
=

q∗ik
`∗ikm

∗
ik

{
∂̂2g̃i

∂ ˜̀
ik∂m̃ik

(˜̀∗
ik, m̃

∗
ik) +

∂̂g̃i

∂ ˜̀
ik

(˜̀∗
ik, m̃

∗
ik)

∂̂g̃i
∂m̃ik

(˜̀∗
ik, m̃

∗
ik)

}
.

The estimates
̂∂2f(`∗ik,m

∗
ik)

∂m2
ik

is also obtained in an analogous manner.

Remark D.1. In general, it is not possible to obtain estimates of
∂2f(`ik,mik)

∂`2ik
and

∂2f(`ik,mik)
∂`ik∂mik

for arbitrary

values of `ik and mik, as they are not identified for every pair of points (`ik,mik) in Li×Mi. Nevertheless,

Lemma C.11 implies that there is still a hope of estimating the values of these functions on the point

(`∗ik,m
∗
ik).

D.3 First- and Second-Order Derivatives of the Quantity Index

To begin with, it holds from (71) and (72) that

Ni∑
k=1

1

Φi
exp

{
ϕ̃i

(
ln

qik
Ai(qi)

)}
= 1. (116)
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Let xik := qik
Ai(qi)

and x̃ik := lnxik. Taking derivatives of (116) with respect to k̄ ∈ Ni,

1

Φi
exp{ϕ̃i(x̃ik̄)}

∂ϕ̃i(·)
∂x̃ik̄

d lnxik̄
dxik̄

∂
qik̄
Ai

∂qik̄
+
∑
k 6=k̄

1

Φi
exp{ϕ̃i(x̃ik)}

∂ϕ̃i(·)
∂x̃ik

d lnxik
dxik

∂ qikAi
∂qik̄

= 0.

Since here

∂
qik̄
Ai

∂qik̄
= A−1

i − qik̄A
−2
i

∂Ai(·)
∂qik̄

=
1

Ai

(
1− qik̄

Ai

∂Ai(·)
∂qik̄

)
, (117)

and

∂ qikAi
∂qik̄

= − 1

Ai

qik
Ai

∂Ai(·)
∂qik

, (118)

I then have

exp{ϕ̃i(x̃ik)}
∂ϕ̃i(·)
∂x̃ik̄

1

qik̄

(
1− qik̄

Ai

∂Ai(·)
∂qik̄

)
+
∑
k 6=k̄

exp{ϕ̃i(x̃ik)}
∂ϕ̃i(·)
∂x̃ik

1

Ai

∂Ai(·)
∂qik̄

= 0

∴ exp{ϕ̃i(x̃ik)}
∂ϕ̃i(·)
∂x̃ik̄

1

qik̄
=

1

Ai

∂Ai(·)
∂qik̄

Ni∑
k=1

exp{x̃ik}
∂ϕ̃i(·)
∂x̃ik

(119)

∴
∂Ai(·)
∂qik̄

=
Ai
qik̄

exp{ϕ̃i(x̃ik̄)}
∂ϕ̃i(·)
∂x̃ik̄∑Ni

k=1 exp{ϕ̃i(x̃ik)}∂ϕ̃i(·)∂x̃ik

. (120)

Substituting (120) back into (117) and (118), I obtain

∂
qik̄
Ai

∂qik̄
=

1

Ai

(
1−

exp{ϕ̃i(x̃ik̄)}
∂ϕ̃i(·)
∂x̃ik̄∑Ni

k=1 exp{ϕ̃i(x̃ik)}∂ϕ̃i(·)∂x̃ik

)
, (121)

and

∂ qikAi
∂qik̄

= − 1

Ai

exp{ϕ̃i(x̃ik̄)}
∂ϕ̃i(·)
∂x̃ik̄∑Ni

k=1 exp{ϕ̃i(x̃ik)}∂ϕ̃i(·)∂x̃ik

. (122)

Next, I aim to derive analytical expressions for ∂2Ai(·)
∂q2
ik̄

and ∂2Ai(·)
∂qik̄qik̄′

for k̄, k̄′ ∈ Ni, in the sequel. As a

starting point, I rewrite (119) as

exp{ϕ̃i(x̃ik)}
∂ϕ̃i(·)
∂x̃ik̄

=
qik̄
Ai

∂Ai(·)
∂qik̄

Ni∑
k=1

exp{x̃ik}
∂ϕ̃i(·)
∂x̃ik

. (123)

Let lhsik̄(qi) and rhsik̄(qi) denote the left and right-hand sides of this equation, respectively.
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Taking derivatives of these with respect to qik̄ delivers

∂lhsi(·)
∂qik̄

= exp{ϕ̃i(x̃ik̄)}
∂ϕ̃i(·)
∂x̃ik̄

d lnxik̄
dxik̄

∂
qik̄
Ai

∂qik̄

∂ϕ̃i(·)
∂x̃ik̄

+ exp{ϕ̃i(x̃ik)}
∂2ϕ̃i(·)
∂x̃2

ik̄

d lnxik̄
dxik̄

∂
qik̄
Ai

∂qik̄

= exp{ϕ̃i(x̃ik̄)}
Ai
qik̄

∂
qik̄
Ai

∂qik̄

{(
∂ϕ̃i(·)
∂x̃ik̄

)2

+
∂2ϕ̃i(·)
∂x̃2

ik̄

}
, (124)

and

∂rhsi(·)
∂qik̄

=
∂
qik̄
Ai

∂qik̄

∂Ai(·)
∂qik̄

Ni∑
k=1

exp{ϕ̃i(x̃ik)}
∂ϕ̃i(·)
∂x̃ik

+
qik̄
Ai

∂2Ai(·)
∂q2

ik̄

Ni∑
k=1

exp{ϕ̃i(x̃ik)}
∂ϕ̃i(·)
∂x̃ik

+
qik̄
Ai

∂Ai(·)
∂qik̄

∂

∂qik̄

Ni∑
k=1

exp{ϕ̃i(x̃ik)}
∂ϕ̃i(·)
∂x̃ik

=
∂
qik̄
Ai

∂qik̄

∂Ai(·)
∂qik̄

Ni∑
k=1

exp{ϕ̃i(x̃ik)}
∂ϕ̃i(·)
∂x̃ik

+
qik̄
Ai

∂2Ai(·)
∂q2

ik̄

Ni∑
k=1

exp{ϕ̃i(x̃ik)}
∂ϕ̃i(·)
∂x̃ik

+
qik̄
Ai

∂Ai(·)
∂qik̄

Ni∑
k=1

exp{ϕ̃i(x̃ik)}
Ai
qik

∂ qikAi
∂qik̄

{(
∂ϕ̃i(·)
∂x̃ik

)2

+
∂2ϕ̃i(·)
∂x̃2

ik

}
. (125)

Clearly, taking derivative of the both hand sides of (123) with respect to qik̄ is tantamount to equating

(124) to (125). After some algebra, I arrive at

∂2Ai(·)
∂q2

ik̄

= −Ai
qik̄

∂
qik̄
Ai

∂qik̄

∂Ai(·)
∂qik̄

− Ai
qik̄

( Ni∑
k=1

exp{ϕ̃i(x̃ik)}
∂ϕ̃i(·)
∂x̃ik

)−1

×
[
qik̄
Ai

∂Ai(·)
∂qik̄

Ni∑
k=1

{
exp{ϕ̃i(x̃ik)}

}
Ai
qik

∂ qikAi
∂qik̄

{(
∂ϕ̃i(·)
∂x̃ik

)2

+
∂2ϕ̃i(·)
∂x̃2

ik

}

− exp{ϕ̃i(x̃ik̄)}
Ai
qik̄

∂
qik̄
Ai

∂qik̄

{(
∂ϕ̃i(·)
∂x̃ik̄

)2

+
∂2ϕ̃i(·)
∂x̃2

ik̄

}]
.

Analogously, I can obtain

∂2Ai(·)
∂qik̄∂qik̄′

= −Ai
qik̄

∂
qik̄
Ai

∂qik̄′

∂Ai(·)
∂qik̄

− Ai
qik̄

( Ni∑
k=1

exp{ϕ̃i(x̃ik)}
∂ϕ̃i(·)
∂x̃ik

)−1
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×
[
qik̄
Ai

∂Ai(·)
∂qik̄

Ni∑
k=1

{
exp{ϕ̃i(x̃ik)}

}
Ai
qik

∂ qikAi
∂qik̄′

{(
∂ϕ̃i(·)
∂x̃ik

)2

+
∂2ϕ̃i(·)
∂x̃2

ik

}

− exp{ϕ̃i(x̃ik̄)}
Ai
qik̄

∂
qik̄
Ai

∂qik̄′

{(
∂ϕ̃i(·)
∂x̃ik̄

)2

+
∂2ϕ̃i(·)
∂x̃2

ik̄

}]
.

Note that ∂Ai(·)
∂qik̄

,
∂
qik̄
Ai

∂qik̄
and

∂
qik̄
Ai

∂qik̄′
are already obtained in (120), (121) and (122), respectively.116

E Validation of the Estimation Procedure: Simulation Study

This section verifies the validity of the estimation strategy described in Section 5 through numerical

simulations under a parametric specification that is widely used in the literature. Using the parametric

model, I first generate simulation data for firm-level revenues, labor and material inputs, productivity,

prices, quantity, and other aggregate variables.117 Next, I repeat the same simulation with a different

value for the policy variable, and then calculate the change in GDP to measure the policy effects (the

estimates based on this method is referred to as simulation-based estimates). Now, the question is if the

researcher can correctly estimate the policy effects without relying on the knowledge about the underlying

parametric model. To highlight this, I also compute the policy effects using the results developed in

Sections 5 (the estimates obtained by this approach is called theory-based estimates). To make the

simulation as close to reality as possible, the theory-based estimates are calculated without directly using

the realization of productivity, prices and quantity as these are not observed in the real data either (see

Section 4).

E.1 Setup

This subsection sets out the parametric form assumptions for the data generating process of this simula-

tion. See Grassi (2017) for the details of the theoretical properties. The sectoral aggregator is assumed

to be a constant elasticity of substitution (CES) production function:

Qi =

( Ni∑
k=1

δikq
σ−1
σ

ik

) σ
σ−1

,

where σ is elasticity of substitution and δik stands for a demand shifter.

In each sector i, individual firm k transforms labor `ik and material mik into output qik using a

Cobb-Douglas production function:

qik = zik`
α
ikm

1−α
ik ,

where the output elasticity represents α and zik is productivity.

116Index needs to be relabeled appropriately.
117These data can be viewed either as the “true data” that realize from the data generating process, or the values that

have been computed under the parameter values so calibrated.
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Material input is composed of sectoral intermediate goods according to the Cobb-Douglas production:

mik =

N∏
j=1

m
γi,j
ik,j ,

where γi,j corresponds to the input share of sector j’s intermediate good, reflecting the production network

Ω.

E.2 Simulation Design

For ease of comparison, I assume that there are only three sectors in the economy (i.e., N = 3), each of

which is populated by the identical set of firms with the number of firms being 50; that is, Ni = 50 for

all i ∈ {1, 2, 3}. I consider two scenario for the current policy regimes (Scenario A and B). In Scenario A,

the current policy regime are all set equal to zero; that is, τi = 0 for all i ∈ {1, 2, 3}. Scenario B assumes

that there are nonzero pre-existing policies. I specifically set τi = 0.2 for all i ∈ {1, 2, 3}.
For each scenario, I consider four specifications, referred to as Specification I, II, III and IV. In

Specifications I and II firms are monopolistically competitive in each sector. In contrast, firms in Section

III and IV are oligopolistic and engaged in a Cournot competition. While Specification I and III assume

away from production networks, Specification II and IV admit a production network across sectors. For

Specification I and III, the adjacency matrix is equivalent to an identity matrix; that is, Ω = I. We

assume that the adjacency matrix in Specification II and IV is given by

Ω =

0.8 0.2 0

0.2 0.6 0.2

0 0.2 0.8

 .
E.2.1 Parameter Values

Parameter values are chosen in such a way that the Cournot-Nash equilibrium is well-defined. First,

firms’ heterogeneous productivities are drawn from a log normal distribution: zik ∼ log(N(0, 0.02)). I set

α = 0.6, σ = 1.1 (i.e., firms’ products are substitutes) and δik = (1/Ni)
1/σi = 0.0285 for all i ∈ {1, 2, 3}

and k ∈ {1, . . . , Ni}.
The researcher has access to firm-level revenue, labor and material inputs, as well as aggregate vari-

ables; no access to firm-level productivities, prices and quantities. Consistent with my framework, the

observed revenue is contaminated with a measurement error ηik.
118 Lastly, I fix the wage rage at W = 1

throughout the simulation study, meaning that I focus on a partial equilibrium exercise.

118The measurement error is assumed to enter in a linear, additive fashion in logs; i.e., log rik = log r̄ik + log ηik, where
r̄ik and r̄ik are the observed and true (simulated) revenue, respectively, with E[log ηik | `ik,mik] = 0. See Section C.1.2.
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E.2.2 Estimands

In view of the decomposition (31), I calculate four effects for each sector as follow:

dYi(s)

ds

∣∣∣∣
s=τn

=

Ni∑
k=1

dp∗ik
dτn

q∗ik︸ ︷︷ ︸
price effect

+

Ni∑
k=1

p∗ik
dq∗ik
dτn︸ ︷︷ ︸

quantity effect

−
( Ni∑
k=1

N∑
j=1

dP ∗j
dτn

m∗ik,j︸ ︷︷ ︸
wealth effect

+

Ni∑
k=1

N∑
j=1

P ∗j
dm∗ik,j
dτn︸ ︷︷ ︸

switching effect

)
.

In this experiment, I focus on the impacts of increasing the subsidy on sector 1 (i.e., n = 1). I

compare the estimates of these four effects based on the simulation-based method and those based on the

theory-based method. To obtain the simulation-based estimates, I run the same model twice, each with

a different level of the subsidy. The first simulation is a baseline under the initial setup. The second one

is performed with the subsidy level changed to τ1 = τ1 + ∆τ1 where we set ∆τ1 = 0.001, while τ2 and τ3

are fixed constant. Using the results from these two simulations, I compute the total derivative of each

endogenous variable. Let x0 and x1 be endogenous variables obtained in the first and second simulation,

respectively. Then, the total derivative of x is approximated as dx
dτ1

= x1−x0
∆τ1

.

E.3 Results

E.3.1 Scenario A

Table 6 compares the simulation-based and theory-based estimates for Scenario A, in which there are no

pre-existing policies in place in the initial state. Each cell reports the number obtained by the theory-

based method, with the round brackets indicating the corresponding simulation-based estimates.

From this table, it can be said that the theory-based estimates are as good as the simulation-based

estimates both quantitatively and qualitatively. Interpreting this table requires some care because neither

of these methods can be deemed the “true” value. The theory-based estimates cannot be exactly the

same as the true values in nature. The accuracy of the simulation-based estimates rests on the size of the

∆τ1 and the extent that the functions are nonlinear. It is expected that the simulation-based estimates

approach the true value as ∆τ1 → 0. Nonetheless, a key takeaway from this table is that the theory-

based method gives estimates both quantitatively and qualitatively similar to those obtained from the

simulation-based method, which is supposed to approximate the true values.

E.3.2 Scenario B

Table 7 compares the simulation-based and theory-based estimates for Scenario B, in which there are

nonzero pre-existing policies in place in the initial state. The same caveat as Section E.3.2 applies, and

the same conclusion can be drawn; that is, the theory-based method gives estimates both quantitatively

and qualitatively similar to those obtained from the simulation-based method, which is supposed to

approximate the true values.
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Table 6: Results: Simulation-based and Theory-based Estimates (Scenario A)

Specification I Specification II Specification III Specification IV

Sector 1
The effects on revenue

price effect -5889.9971 -7433.5995 -5876.1507 -7517.3979
(-5492.7537) (-7050.4060) (-5680.9199) (-7291.9330)

quantity effect 6478.9280 8176.8724 5876.1507 7517.3979
(6042.0290) (7755.4466) (5680.9199) (7291.9330)

The effects on input cost
wealth effect -235.5826 -245.0903 -209.3945 -220.1727

(-199.7365) (-210.5693) (-202.4459) (-213.4256)
switching effect 516.5769 665.5503 478.9621 625.8674

(519.7847) (667.1325) (506.5706) (650.1730)
The total effects 307.9366 322.8128 -269.5676 -405.6946

(229.2271) (248.4774) (-304.1247) (-436.7474)

Sector 2
The effects on revenue

price effect 0.0000 -1120.1258 0.0000 -1020.2217
(0.0000) (-931.2232) (0.0000) (-963.1243)

quantity effect (-0.0000) (1232.1253) (-0.0000) (1020.2217)
(-0.0000) (1024.3456) (-0.0000) (963.1243)

The effects on input cost
wealth effect (0.0000) (-101.7693) (0.0000) (-89.0697)

(0.0000) (-84.6398) (0.0000) (-85.7879)
switching effect (0.0000) (99.5871) (0.0000) (84.3267)

(-0.0000) (88.0634) (-0.0000) (85.8254)
The total effects (0.0000) (114.1816) (0.0000) (4.7430)

(-0.0000) (89.6987) (0.0000) (-0.0375)

Sector 3
The effects on revenue

price effect 0.0000 -122.8816 0.0000 -99.8181
(0.0000) (-88.4324) (0.0000) (-91.4618)

quantity effect -0.0000 135.1683 -0.0000 99.8181
(-0.0000) (97.2756) (-0.0000) (91.4618)

The effects on input cost
wealth effect 0.0000 -11.1644 0.0000 -8.7145

(0.0000) (-8.0392) (0.0000) (-8.1482)
switching effect 0.0000 11.0586 0.0000 8.3437

(-0.0000) (8.3611) (-0.0000) (8.1485)
The total effects 0.0000 12.3926 0.0000 0.3709

(-0.0000) (8.5213) (0.0000) (-0.0003)

The change in GDP 307.9366 449.3870 -269.5676 -400.5808
(229.2271) (346.6975) (-304.1247) (-436.7853)

Note: This table reports the simulation-based and theory-based estimates for Scenario A. Each cell indicates the number

obtained by the theory-based method, with the round brackets indicating the corresponding simulation-based estimates.
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Table 7: Results: Simulation-based and Theory-based Estimates (Scenario B)

Specification I Specification II Specification III Specification IV

Sector 1
The effects on revenue

price effect 1 -6344.7366 -8007.6957 -6329.8521 -8097.8738
(-5917.1362) (-7595.2037) (-6119.8407) (-7855.3940)

quantity effect 1 6979.1368 8808.3708 6329.8519 8097.8737
(6508.8499) (8354.7241) (6119.8407) (7855.3940)

The effects on input cost
price effect 2 -317.2137 -330.0230 -281.9525 -296.4675

(-268.9607) (-283.5510) (-272.6091) (-287.3972)
quantity effect 2 692.4298 882.8858 641.9433 829.8854

(700.0890) (898.5387) (682.2904) (875.6960)
The total effects 259.1841 247.8124 -359.9910 -533.4179

(160.5854) (144.5326) (-409.6813) (-588.2987)

Sector 2
The effects on revenue

price effect 1 0.0000 -1206.6214 0.0000 -1099.0013
(0.0000) (-1003.2474) (0.0000) (-1037.6158)

quantity effect 1 -0.0000 1327.2693 -0.0000 1099.0013
(0.0000) (1103.5721) (-0.0000) (1037.6158)

The effects on input cost
price effect 2 0.0000 -137.0358 0.0000 -119.9343

(0.0000) (-113.9769) (0.0000) (-115.5230)
quantity effect 2 0.0000 133.6919 0.0000 113.1961

(0.0000) (118.6000) (-0.0000) (115.5862)
The total effects 0.0000 123.9918 0.0000 6.7382

(0.0000) (95.7017) (0.0000) (-0.0632)

Sector 3
The effects on revenue

price effect 1 0.0000 -132.3720 0.0000 -107.5259
(0.0000) (-95.2727) (0.0000) (-98.5365)

quantity effect 1 -0.0000 145.6076 -0.0000 107.5259
(0.0000) (104.8000) (-0.0000) (98.5365)

The effects on input cost
price effect 2 0.0000 -15.0332 0.0000 -11.7343

(0.0000) (-10.8262) (0.0000) (-10.9730)
quantity effect 2 0.0000 14.5946 0.0000 11.0195

(0.0000) (11.2598) (-0.0000) (10.9736)
The total effects 0.0000 13.6743 0.0000 0.7149

(0.0000) (9.0936) (0.0000) (-0.0006)

The change in GDP 259.1841 247.8124 -359.9910 -533.4179
(160.5854) (249.3279) (-409.6813) (-588.3625)

Note: This table reports the simulation-based and theory-based estimates for Scenario B. Each cell indicates the number

obtained by the theory-based method, with the round brackets indicating the corresponding simulation-based estimates.
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