Constructive Deconstruction: Evaluating Industrial Policies in Strategic Interactions and Production Networks*

Ko Sugiura ${ }^{\dagger}$

January 20, 2024
Click here for the latest version

Abstract

This paper studies the economic impacts of industrial policies - policies that are purposefully targeted at particular industries - when industries are linked through production networks and firms in each industry engage in strategic interactions. The key mechanism of my model is that in response to a policy reform, the firms' markups change due to not only adjustments of their own actions but also those of competitors' actions (strategic complementarities), and that both of these changes are compounded by the production network. To identify the policy effect in this setup, I develop a new procedure that first deconstructs it into firm-level variables - firm-level sufficient statistics - as well as sector-level variables, and then identifies these building blocks before finally reconstructing the policy parameter of interest. Using my framework, I examine the impact of one part of the U.S. CHIPS and Science Act of 2022 on GDP. My estimation predicts that accounting for firms' strategic interactions nearly doubles the magnitude of the policy effect, highlighting the policy relevance of strategic interactions in the presence of a production network.

Keywords: Policy evaluations, Industrial policies, Strategic interactions, Production networks, Identification

JEL Codes: E61, E65, F13, F41, L13, L16

[^0]
1 Introduction

Over the past few decades, industrial policies - policies that are purposefully targeted at particular industries - have been at the forefront of economic policy debates in a range of contexts. ${ }^{1}$ In recent years, U.S. tariffs, primarily on imports from China, were raised by about 14 percentage points to an average of almost $16.6 \% .^{2}$ In addition, the CHIPS and Science Act of 2022 aims to make nearly $\$ 53$ billion of investment in the semiconductor industry. ${ }^{3}$ Of great importance for policymakers are ex ante evaluations of the impacts of these policies on macroeconomic outcomes such as GDP.

Despite the rich stockpile of empirical treatment-effect estimates on industrial policies targeted at certain sectors, they cannot generally provide an answer to macroeconomic policy questions because of agents' interactions in two dimensions. ${ }^{4}$ The first is the growing recognition in the literature that strategic interactions between heterogeneous firms are the key to replicating a number of salient empirical regularities - for instance, an incomplete pass-through of a price shock (Atkeson and Burstein 2008) and market power (De Loecker et al. 2020, 2021). Second, the understanding that production processes interact through production networks (e.g., Horvath 1998, 2000) has sparked extensive research on their implications - for instance, aggregate fluctuations (Acemoglu et al. 2012), and misallocation (Baqaee and Farhi 2020). However, even in the realm of structural modeling, no existing research studying the impacts of industrial policies has included both of these two features at once, impeding a precise ex ante evaluation of an industrial policy.

In this paper, I develop a structural framework for policy evaluation, accounting for firms' oligopolistic competition and production networks between industries. I define the policy effect as the change in GDP due to an industrial policy. The key mechanism of my model is that the production network compounds not only the firms' markup responses with respect to their own choices but also those with respect to competitors' (strategic complementarities), with the latter being absent in monopolistic models. Moreover, in strategic interaction models, individual firms have the potential to exert a nonnegligible influence over sectoral outcomes; thus, the policy parameter cannot be characterized by aggregate variables alone. This invalidates the aggregate sufficient statistics approach, a method increasingly used in recent macroeco-

[^1]nomics and international trade literature. ${ }^{5}$ This paper exploits widely used firm-level data and proposes a new sequential procedure that identifies the policy effect in terms of individual firm's responses which I call firm-level sufficient statistics. This identification approach is constructive, so that a nonparametric estimator for the policy effect can be obtained by reading the procedure in reverse. ${ }^{6}$ I then apply my framework to examine the effect of one part of the U.S. CHIPS and Science Act - corresponding to an additional subsidy on the semiconductor industry - and compare the estimate based on oligopolistic competition to that based on monopolistic competition. I find that the former nearly doubles the latter in magnitude, echoing the empirical relevance of accounting for strategic competition in the presence of a production network.

My model builds on Liu (2019) to study a general equilibrium multisector model of a production network by assuming that each sector is populated by a finite number of heterogeneous oligopolistic firms, thereby firm-level markups being endogenously variable. The government helps firms to purchase sectoral intermediate goods through an ad-valorem subsidy specific to the purchaser sector. The policy effect is defined as the change in GDP due to a shift in the level of the sector-specific subsidy (i.e., an industrial policy). To keep track of the endogenously variable markups, I restrict the sectoral aggregators to be a demand system that is homothetic with a single aggregator (HSA; Matsuyama and Ushchev 2017). One benefit of this specification is that firms' interactions are summarized by the single aggregator. ${ }^{7}$ Still, the fact that individual firms are finite in number and thus nonnegligible to the aggregate hampers the identification of the policy effect by the aggregate sufficient statistics. This paper proposes an alternative approach that recovers the policy parameter in terms of firm-level variables.

The identification analysis of this paper consists of three layers. In the top layer, the object of interest is written as a continuous sum of the marginal changes in GDP over the course of a policy reform. The middle layer further deconstructs each of these marginal changes into the responsiveness of firm- and sector-level variables to an infinitesimally small policy change. These comparative statics are then recovered by solving the systems of equations that are derived from the firm's optimization problems, taking the firm-level output quantity and price, as well as the elasticities of firm-level production and inverse demand functions, as given. The bottom layer obtains these conditioning variables - firmlevel sufficient statistics - by leveraging the control function approach of the industrial organization

[^2]literature. In doing so, I restrict the class of demand and production functions and the way in which firms' productivities enter the individual firm's decision. I show that these assumptions are flexible enough to accommodate the specifications that are commonly used in the macroeconomics literature. This identification analysis is constructive, so that a nonparametric estimator for the policy effect can be obtained by reading these procedures from the bottom to the top. Unlike the calibration-type approach, my estimation does not require any external information (e.g., parameter estimates from the preceding research) and thus can be performed in a self-contained fashion.

Finally, I bring my framework to the U.S. firm-level data to evaluate the economic impacts of the CHIPS and Science Act, which selectively promotes the semiconductor industry and was enacted in 2022. I consider a hypothetical policy experiment of shifting the ad-valorem subsidy on the computer and electronic products industry from the 2021 level, which is 14.89%, to an alternative level of 16.00% equivalent to $\$ 0.56$ billion. The estimate accounting for strategic interactions as well as the production network predicts that GDP falls by $\$ 1.34$ billion, while the estimate based on monopolistic competition under the production network suggests a smaller decrease of $\$ 0.71$ billion. Comparing these two estimates underlines the policy relevance of correctly accounting for the firm's strategic interactions.

To better understand the mechanism behind this, I analyze the responsiveness of GDP at the 2021 subsidy with an industry-level breakdown. First, I decompose the responsiveness of sectoral GDP into four components, namely, i) the changes in output quantities (quantity effects), ii) the associated changes in output prices (price effects), iii) the changes in input costs due to changes in input quantities (switching effects), and iv) the changes in input costs due to changes in input prices (wealth effects). ${ }^{8}$ An important insight here is that in the networked economy, the output of one sector may be used as an input in all sectors, so that the output price change in one sector directly affects the input price of all sectors. My estimation suggests that for many sectors in oligopolistic competition, even if firms produce more of their products, input prices do not decrease as much as output prices do, leaving them with a higher input cost. (The negative contributions of the switching effects dominate.)

Second, I further explore the tension between these four forces from the angle of pass-through coefficients. I theoretically show that the sector-level cost-price pass-through can be written in terms of a weighted sum of firms' strategic complementarities in the sector, which in turn is compounded along the production network to give the sector-level policy-cost pass-through coefficient. The former is referred

[^3]to as the micro complementarity, and the latter is the macro complementarity. My empirical estimates for these complementarities under oligopolistic competition significantly differ both quantitatively and qualitatively from those under monopolistic competition. The difference manifests itself in 23 out of 38 industries through the difference in the sign of the marginal change of the sectoral price index, which is associated with that of firms' equilibrium responses. This result again points to the empirical relevance of accounting for firms' strategic interactions in credibly predicting firms' responses and hence the policy effect.

Related literature

This paper contributes to four strands of the literature. First, the framework put forth in this paper is directly related to the literature on ex ante counterfactual predictions of economic shocks (e.g., trade costs, productivity), such as Arkolakis et al. (2012), Melitz and Redding (2015), Adão et al. (2017), Feenstra (2018), and Adão et al. (2020). My framework, though, marks a distinction in two ways. First, the preceding papers are based on perfectly competitive or monopolistic firms, wheres my paper explicitly accounts for firms' strategic interactions. Second, the existing literature is mostly concerned with directly expressing an aggregate outcome in terms of aggregate variables - aggregate sufficient statistics. In contrast, my approach first deconstructs the object of interest into firm-level variables -firm-level sufficient statistics - as well as sector-level variables, and then shows that these variables can be recovered from the observables before the researcher can reconstruct the same objective outcome.

Second, this paper advances the literature on industrial policies on both theoretical and empirical grounds. The theory of optimal industrial policy in a multisector environment is explored in Itskhoki and Moll (2019) and Liu (2019) for exogenous market distortions; in Lashkaripour and Lugovskyy (2023) for endogenous but constant markups; and in Bartelme et al. (2021) for endogenously varying market distortions. In my model, the market distortions arise from oligopolistic competition and thus can endogenously vary according to the strategic interactions. ${ }^{9,10}$ On the empirical front, my paper intersects

[^4]with the treatment effect literature. Among many others, Criscuolo et al. (2019) discuss the "reducedform" causal effects of an industrial policy. ${ }^{11}$ The causal interpretation of their policy parameter, however, is limited to those units that have experienced (exogenous) changes in the eligibility of receiving the policy. From the perspective of a policymaker who considers the well-being of a society as a whole, such a locally tailored notion of "causal effect" might not be of central interest. In the spirit of the policy relevant treatment effects (Heckman and Vytlacil 2001, 2005, 2007), this paper studies an alternative treatment effect parameter that is both economically interesting and causal in the sense of Marshall (1890). In a similar vein, Rotemberg (2019) investigates the aggregate effects taking into account the general equilibrium effects, and Sraer and Thesmar (2019) derive formulas that are able to counterfactually expand firm-level treatment effects to the aggregate level. Their methodologies are, however, essentially ex post, whereas my framework can be used for ex ante policy evaluations.

Third, this paper contributes to the literature documenting the empirical relevance of endogenous firms' markups, such as Atkeson and Burstein (2008), Amiti et al. (2014), Edmond et al. (2015), Arkolakis et al. (2019), Gaubert and Itskhoki (2020), and De Loecker et al. (2021). I connect this line of research to the literature on sectoral comovements of prices and quantities (e.g., Basu 1995; Huang and Liu 2004; Huang et al. 2004; Huang 2006; Nakamura and Steinsson 2010; La'O and Tahbaz-Salehi 2022; Rubbo 2023) by introducing production networks across sectors. Specifically, I show that the sectoral comovements are traced out by the combination of the within-sector interactions summarizing firms' strategic complementarities (what I refer to as micro complementarities) and the between-sector interactions compounding the micro complementarities along the production network (what I call macro complementarities). ${ }^{12}$

Lastly, outside the domain of the macroeconomics literature, my method is tightly linked to the industrial organization literature on the identification of firms' production functions. In particular, the control function approach (e.g., Olley and Pakes 1996; Levinsohn and Petrin 2003) has customarily assumed perfect competition (e.g., Ackerberg et al. 2015; Gandhi et al. 2019) or monopolistic competition (e.g., Kasahara and Sugita 2020). My paper extends their method to strategic interactions by adapting the notion of sufficient statistics for competitors' decisions and productivities. ${ }^{13}$

[^5]
2 Overview

In this section, I provide an overview of this paper using a simple input-output accounting framework and a duopoly model. ${ }^{14}$ This section serves two purposes. First, it illustrates the implications of featuring both a production network and oligopolistic competition in policy analysis and contrasts it to the cases without either of these mechanisms. To this end, I first consider the standard input-output accounting framework with sector-level markups ${ }^{15}$ and then provide a microfoundation to study the firm-level endogenous markup adjustment. Second, this section explains the identification challenge in this environment and briefly sketches the approach put forth in this paper.

2.1 Setup

Consider an economy consisting of two sectors, indexed by $i \in\{1,2\}$. Each sector's sales (measured in the appropriate monetary unit) are denoted by x_{i}. Assume that for each industry i, the sector's sales $\left(x_{i}\right)$ are different from the cost $\left(\tilde{x}_{i}\right)$ by the rate of μ_{i} (i.e., $x_{i}=\mu_{i} \tilde{x}_{i}$). I consider the case of $\mu_{i}>1$, in which μ_{i} can be interpreted as a sector-level markup (a microfoundation is provided in Section 2.3). Let the expenditure for the final consumption of sector i 's product be denoted by y_{i}. Letting the share of sector j 's good in sector i 's cost being represented by $\omega_{i, j}$ for $i, j \in\{1,2\}$, I use an array $\Omega:=\left[\omega_{i, j}\right]_{i, j \in\{1,2\}}$ to keep track of the input-output structure (Table 1).

Let X and Y be vectors stacking x_{i} 's and y_{i} 's, respectively (i.e., $X:=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{\prime}$ and $Y:=\left[y_{1} y_{2}\right]^{\prime}$), and let M be a 2×2 diagonal matrix with the typical diagonal element being the sectoral markup and zero otherwise. It is assumed that the only source of the value added, denoted by $V A$, is profits: ${ }^{16}$

$$
\begin{equation*}
V A=\left(I-M^{-1}\right) X \tag{1}
\end{equation*}
$$

where I is an identity matrix.
The (nominal) gross domestic product is given by the total value added (i.e., $\left.G D P=(V A)^{\prime} \iota\right)$, where ι is a 2×1 vector of ones. Let τ_{1} denote a policy specific to sector $1,{ }^{17}$ and suppose that a policymaker the standard control function approach to the case of oligopolistic competition, but they do not provide a methodology to deal with the strategic interactions in recovering the firm's production function.
${ }^{14}$ The full description is relegated to Appendix A.
${ }^{15}$ This section considers a single-country, closed-economy version of Timmer et al. (2015).
${ }^{16}$ I abstract away from labor in this section, as the message does not change. The formal model in Section 3 explicitly includes labor as a source of value added.
${ }^{17}$ As far as the discussion of this section is concerned, the policy tool τ_{1} can be left unspecified, but could represent a variety of policies, such as sales tax and input subsidies.

Table 1: Input-Output Table

Seller Purchaser	Sector 1	Sector 2	Final Consumption	Total Sales
Sector 1	$\omega_{1,1} \tilde{x}_{1}$	$\omega_{2,1} \tilde{x}_{2}$	y_{1}	x_{1}
Sector 2	$\omega_{1,2} \tilde{x}_{1}$	$\omega_{2,2} \tilde{x}_{2}$	y_{2}	x_{2}
Total Cost	\tilde{x}_{1}	\tilde{x}_{2}		
Value Added (VA)	$\left(1-\frac{1}{\mu_{1}}\right) x_{1}$	$\left(1-\frac{1}{\mu_{2}}\right) x_{2}$		

Note: This figure represents an input-output table for a two-sector economy with market distortions.
hopes to learn the change in GDP as a result of changing the policy from the current level τ_{1}^{0} to an alternative level τ_{1}^{1}, which is denoted by $\Delta G D P\left(\tau_{1}^{0}, \tau_{1}^{1}\right)$. Observe that the object of policy interest can be decomposed as

$$
\begin{equation*}
\Delta G D P\left(\tau_{1}^{0}, \tau_{1}^{1}\right)=\int_{\tau_{1}^{0}}^{\tau_{1}^{1}}\left(\frac{d V A}{d \tau_{1}}\right)^{\prime} \iota d \tau_{1} \tag{2}
\end{equation*}
$$

where ι is a 2×1 vector of ones. ${ }^{18}$
Next, I show how the difference in the market structure, in conjunction with the production network, lends itself to being a difference in the policy parameter $\Delta G D P\left(\tau_{1}^{0}, \tau_{1}^{1}\right)$. To this end, I introduce two notions: macro and micro complementarities.

2.2 Macro Complementarities

Totally differentiating (1) yields

$$
\begin{equation*}
\frac{d V A}{d \tau_{1}}=\underbrace{-\frac{d M^{-1}}{d \tau_{1}} X} \quad+\underbrace{\left(I-M^{-1}\right) \frac{d X}{d \tau_{1}}} \tag{3}
\end{equation*}
$$

where $\frac{d M^{-1}}{d \tau_{1}}=-M^{-1} \frac{d M}{d \tau_{1}} M^{-1}$ and $\frac{d X}{d \tau_{1}}=\sum_{n=1}^{\infty} \sum_{l=0}^{n-1}\left(\Omega M^{-1}\right)^{l+1} \frac{d M}{d \tau_{1}} M^{-1}\left(\Omega M^{-1}\right)^{n-l-1} Y+\left(I-\Omega M^{-1}\right)^{-1} \frac{d Y}{d \tau_{1}}$, with $\frac{d M}{d \tau_{1}}=\operatorname{diag}\left(\left[\frac{d \mu_{1}}{d \tau_{1}} \frac{d \mu_{2}}{d \tau_{1}}\right]\right) .{ }^{19}$ In (3), the first term indicates the direct effects of the changes in markups, and the second term gives the impacts of the changes in markups that come through changes in sales. Notice that the marginal changes in sectors' sales $\frac{d X}{d \tau_{1}}$ are proportional to the final consumption augmented by the elasticities of markups with the ratio assigned to the sector's location on the production network. ${ }^{20}$

[^6]Moreover, this term traces out the comovements of sectoral sales $d x_{i}$ and $d x_{j}$ with $i \neq j \in\{1,2\}$, which I call the macro complementarities.

To delve deeper into the macro complementarities, the next subsection lays out a microfoundation of the responses of the sectoral markups $\frac{d M}{d \tau_{1}}$ through the lens of a duopoly model. ${ }^{21}$

2.3 Micro Complementarities

I employ a variant of Melitz and Ottaviano (2008). Suppose that each industry i is populated by two firms $k \in\{1,2\}$ (i.e., a duopoly), each producing a single differentiated product under a constant marginal $\operatorname{cost} m c_{i k}$. The firms engage in a Cournot competition of complete information. Firms' products are aggregated into a single homogeneous sectoral good Q_{i} according to a quadratic production function:

$$
\begin{equation*}
Q_{i}=q_{i 0}+a\left(q_{i 1}+q_{i 2}\right)-\frac{b}{2}\left(q_{i 1}^{2}+q_{i 2}^{2}\right)-\frac{c}{2}\left(q_{i 1}+q_{i 2}\right)^{2}, \tag{4}
\end{equation*}
$$

where $q_{i 0}$ is an outside good, $q_{i k}$ is meant to be the demand of firm k 's product for $k \in\{1,2\}$, and a, b, and c are demand parameters. ${ }^{22}$ Assuming positive demand for each product, the inverse demand function faced by firm $k \in\{1,2\}$ is given by $p_{i k}=a-b q_{i k}-c\left(q_{i 1}+q_{i 2}\right)$.

I define markup as the ratio of price to marginal cost. That is, a firm-level markup is given by $\mu_{i k}:=\frac{p_{i k}}{m c_{i k}}$ and the sector-level markup $\mu_{i}:=\frac{P_{i}}{m c_{i 1}+m c_{i 2}+1}$, where $P_{i}=\frac{1}{2}\left(p_{i 1}+p_{i 2}\right)$ is the industry's price index. Total differentiation yields

$$
\begin{equation*}
\frac{d \mu_{i}}{d \tau_{1}}=\underbrace{\kappa_{i 1} \frac{\partial \mu_{i 1}(\cdot)}{\partial q_{i 1}} \frac{d q_{i 1}}{d \tau_{1}}+\kappa_{i 2} \frac{\partial \mu_{i 2}(\cdot)}{\partial q_{i 2}} \frac{d q_{i 2}}{d \tau_{1}}}_{\text {change in markups with respect to own choices }}+\underbrace{}_{\text {change in markups with respect to competitors' }} \kappa_{i 1} \frac{\partial \mu_{i 1}(\cdot)}{\partial q_{i 2}} \frac{d q_{i 2}}{d \tau_{1}}+\kappa_{i 2} \frac{\partial \mu_{i 2}(\cdot)}{\partial q_{i 1}} \frac{d q_{i 1}}{d \tau_{1}}, \tag{5}
\end{equation*}
$$

where $\mu_{i k}(\cdot)$ is firm k 's markup function and $\kappa_{i k}=\frac{m c_{i k}}{m c_{i 1}+m c_{i 2}+1}$ for each $k \in\{1,2\}$. The first two terms of (5) account for the contributions from the firms' markup elasticities with respect to their own choices. The third and fourth terms capture the effects of the firms' markup elasticities with respect to competitors' choices that come through the strategic interaction (i.e., the strategic complementarity). That is, $\frac{d \mu_{i}}{d \tau_{1}}$ involves a weighted average of (functions of) strategic complementarities; I refer to this weighted average corresponds to the sector's intermediate purchases from all industries used as intermediate inputs in the ($n-l-1$)th round of the production process (downstreamness). See Antràs et al. (2012) and Antràs and Chor (2019).
${ }^{21}$ Grassi and Sauvagnat (2019) consider a setup similar to (38) with the assumption that the markups are exogenous.
${ }^{22}$ The outside good $x_{i 0}$ is used as a numeriare good and produced in a perfectly competitive fashion under constant returns to scale at unit cost. Labor is assumed to be the sole factor of production. The demand parameters a, b, and c are all assumed to be positive. See Melitz and Ottaviano (2008) for the details.
as the micro complementarity. Stacking (5), I can write as

$$
\begin{equation*}
\frac{d M}{d \tau_{1}}=\bar{M}+\tilde{M}, \tag{6}
\end{equation*}
$$

where \bar{M} and \tilde{M} are diagonal matrices with the (i, i) entry being equal to the first two terms and the other two terms of (5), respectively. It is worth stressing that when the market is monopolistically competitive, the term \tilde{M} is dropped.

To summarize, firms' markup elasticities with respect to their own and competitors' choices (strategic complementarities) add up to sectors' micro complementarities as given in (6), which in turn accrue through the production network, yielding sectors' macro complementarities according to (3).

Lastly, substituting (3) and (6) into (2) decomposes the policy effect into three components:

$$
\begin{align*}
\Delta & G D P\left(\tau_{1}^{0}, \tau_{1}^{1}\right) \\
= & \underbrace{\int_{\tau_{1}^{0}}^{\tau_{1}^{1}}\left\{\left(I-M^{-1}\right)\left(I-\Omega M^{-1}\right)^{-1} \frac{d Y}{d \tau_{1}}\right\}^{\prime} \iota d \tau_{1}}_{\text {the policy impact due to the change in final consumption }} \\
& +\underbrace{\int_{\tau_{1}^{0}}^{\tau_{1}^{1}}\left[\left\{\bar{M} M^{-2} \sum_{n=0}^{\infty}\left(\Omega M^{-1}\right)^{n}-\left(I-M^{-1}\right) \sum_{n=1}^{\infty} \sum_{l=0}^{n-1}\left(\Omega M^{-1}\right)^{l+1} \bar{M} M^{-1}\left(\Omega M^{-1}\right)^{n-l-1}\right\}^{\prime}\right]^{\prime} \iota d \tau_{1}}_{\text {the policy impact coming through the changes in firms' markups due to own choices }} \\
& +\underbrace{\int_{\tau_{1}^{0}}^{\tau_{1}^{1}}\left[\left\{\tilde{M} M^{-2} \sum_{n=0}^{\infty}\left(\Omega M^{-1}\right)^{n}-\left(I-M^{-1}\right) \sum_{n=1}^{\infty} \sum_{l=0}^{n-1}\left(\Omega M^{-1}\right)^{l+1} \tilde{M} M^{-1}\left(\Omega M^{-1}\right)^{n-l-1}\right\} Y\right]^{\prime} \iota d \tau_{1}}_{\text {the policy impact coming through the changes in firms' markups due to competitors' choices }} . \tag{7}
\end{align*}
$$

The first term represents the policy effects stemming from the change in final consumption. The second and third terms, respectively, capture the change in GDP as a direct consequence of the firms' own choices and that induced by the competitors' choices. When sectors are monopolistically competitive, the third term in (7) is dropped. In the absence of production networks, (7) holds by replacing Ω with an identity matrix I. Hence, failure to account for either a production network or oligopolistic competition generates a prediction different from the one given by (7).

In general, the qualitative and quantitative consequences of embracing strategic interactions are ambiguous because the sign of the third term in (5) depends on all firms' strategic complementarities, which can be either positive or negative. That is, the (integrand of the) third term in (7) may act in a way that either fortifies or counteracts the (integrand of the) first term.

2.4 Idea of Identification Strategy

The starting point of my identification analysis is (7) (the top layer). The difficulty arises from the fact that the integrands cannot simply be written in terms of sectoral aggregates only, as it consists of a finite number of firms. ${ }^{23}$ In the example above, there are only two firms in each sector. This means that each firm is the crucial competitor to the other, so that both firms are not negligible in determining the sectoral aggregate.

To get a better sense of how this matters, suppose for a moment that the two firms are equally productive and thus equally competitive. In this case, each firm accounts for half of the sectoral aggregate. Ignoring the contribution of either of them yields a sectoral outcome that substantially differs from the true one. Hence, the existing approach that relies on the assumption of infinitesimally small firms cannot be applied in my framework.

The idea here is to recover the firm-level responses. Observe first that the integrands of (7) are expressed in terms of the comparative statics, as shown in (5). These comparative statics are pinned down by the system of equations that result from the underlying firm's optimization problems, taking the firm-level quantity and price, and derivatives of firm-level production and demand functions (and thus the firm's markup elasticities \bar{M} and \tilde{M}) as given (the middle layer). These firm-level conditioning variables can be identified by applying the control function approach of the industrial organization literature to the case of oligopolistic competition (the bottom layer). To do this, though, requires additional assumptions. Continuing the setup sketched above, this subsection further illustrates the idea of the bottom layer.

Now, I assume that i) the sectoral aggregators take the form of a demand system that is homothetic with a single aggregator, $i i$) the firm-level production functions exhibit constant returns to scale with Hicks-neutral productivity, and iii) competitors' productivities enter the firm's decision only through a single aggregate. The plausibility of these assumptions can immediately be verified as shown below. ${ }^{24}$

First, it is known that (4) falls into the class of an HSA demand system. ${ }^{25}$ Second, suppose that the firm-level production in sector i is given by $q_{i k}=z_{i k} f_{i}\left(m_{i k, 1}, m_{i k, 2}\right)$, where $f_{i}(\cdot)$ is constant returns to scale with $z_{i k}$ and $m_{i k, j}$ representing firm k 's productivity and input demand for sector j 's good,

[^7]respectively. ${ }^{26}$ It is assumed that firms first decide the output quantity under a Cournot duopoly, followed by the decision about the input quantity of sectoral goods. Under this setting, firm k 's marginal cost can be written as $m c_{i k}=z_{i k}^{-1} m c_{i}$, where $m c_{i}$ is a constant common to all firms in sector $i .{ }^{27}$ The Cournot-Nash equilibrium quantity is given by $q_{i k}^{*}=K_{i} z_{i k}^{-1}+\bar{H}_{i}$, where K_{i} and $\bar{H}_{i}=H_{i}\left(z_{i 1}, z_{i 2}\right)$ are sector-specific constants, with $H_{i}(\cdot)$ being a sector-specific function of firms' productivities. ${ }^{28}$ The latter can be interpreted as representing the level of market competitiveness. Lastly, the firm's input decision is thus constrained by the following production possibility frontier:
$$
z_{i k} f_{i}\left(m_{i k, 1}, m_{i k, 2}\right)=q_{i k}^{*}=K_{i} z_{i k}^{-1}+\bar{H}_{i},
$$
from which it follows that there exists a function \mathcal{M}_{i} such that $z_{i k}=\mathcal{M}_{i}\left(m_{i k, 1}, m_{i k, 2} ; \bar{H}_{i}\right) .{ }^{29}$ Accounting for the firm's strategic interaction through \bar{H}_{i}, this expression conforms to the control function of the industrial organization literature, so that the techniques developed in that literature can readily be applied.

To summarize, the object of interest can be broken down into the comparative statics, which in turn are recovered by solving the system of equations conditional on firm-level responses. As soon as these conditioning variables are identified, the policy parameter can be recovered. To do so, this paper imposes a set of restrictions, but these are sufficiently mild in the sense of accommodating the specifications commonly used in the literature.

3 Model

A growing body of empirical reduced-form research has studied the causal effects of industrial policies. However, these estimates may not be informative for ex ante evaluations of the causal impact of an industrial policy on macroeconomic outcomes for three reasons. First, the literature has found that firms are engaged in strategic interactions through market competition in each sector and that firms' production processes interact through production networks. ${ }^{30}$ Second, firms exhibit a multitude of unobserved

[^8]heterogeneities. ${ }^{31}$ Third, industrial policies are local in nature, but macroeconomic outcomes, such as GDP, are global by characteristics, wherein the general equilibrium effects are in play. ${ }^{32}$

To circumvent these challenges, this section spells out a general equilibrium closed-economy multisector model of oligopolistic competition among heterogeneous firms under production networks. The model is akin to Liu (2019), who considers the optimal policy in the presence of a production network when there are exogenous market distortions. I depart from his setup by replacing the exogenous wedges with endogenously variable firms' markups. In my model, the markups can arise from oligopolistic competition among a finite number of heterogeneous firms and the non-CES specification of the residual inverse demand functions faced by the firms. ${ }^{33}$

It is postulated that as a way to neutralize the market distortions induced by the endogenous markups, the government manipulates sector-specific policy instruments $\boldsymbol{\tau}:=\left\{\tau_{i}\right\}_{i=1}^{N}$, where τ_{i} is understood as an ad-valorem subsidy on sector i 's purchase of intermediate sectoral goods if it is positive, and a tax otherwise. ${ }^{34}$ I restrict my attention to the short-run policy effects abstracting away from the entry and exit decisions (extensive margins), as postulated in Mayer et al. (2021) and Wang and Werning (2022). ${ }^{35}$

The model is static and there is no uncertainty. The economy consists of a representative household, a government, and N production sectors, indexed by $i \in \mathbf{N}:=\{1, \ldots, N\}$. Each sector i is populated by a finite number N_{i} of heterogeneous oligopolistic firms, indexed by $k \in \mathbf{N}_{i}:=\left\{1, \ldots, N_{i}\right\}$, each of which produces a single differentiated good. There is a sectoral aggregator that aggregates the firms' products in the same sector into a single intermediate good. Sectoral goods are further combined to produce a final consumption good. Both the final and sectoral aggregators operate in perfectly competitive markets.

Firm-level production uses labor and sectoral intermediate goods as inputs. The transaction of sectoral goods by firms shapes the input-output linkages, denoted by $\Omega:=\left[\omega_{i, j}\right]_{i, j \in \mathbf{N}}$ with $\omega_{i, j}$ being the share of sector j 's intermediate good in sector i 's expenditure for inputs. ${ }^{36}$

[^9]
3.1 Market Distortions and Industrial Policy

Let $\boldsymbol{\tau}^{0}$ denote the policy regime currently in place. Suppose that the policymaker wishes to learn how much GDP would increase or decrease by moving to an alternative policy regime $\boldsymbol{\tau}^{1}$. That is, the current policy $\boldsymbol{\tau}^{0}$ might not yet be optimized but rather can be a part of the market distortions, and the policymaker is looking for a way to improve GDP. ${ }^{37}$ In particular, the policymaker is interested in changing only the subsidy on sector n while keeping the subsidies on the other sectors (i.e., an industrial policy on sector n). ${ }^{38}$ Thus, the policy parameter is defined as the change in GDP due to a policy reform from τ_{n}^{0} to τ_{n}^{1}, which is denoted by $\Delta Y\left(\tau_{n}^{0}, \tau_{n}^{1}\right)$.

To give this policy parameter a causal interpretation, I impose the following assumptions.

Assumption 3.1 (Policy Invariance). Throughout the policy reform from $\boldsymbol{\tau}^{0}$ to $\boldsymbol{\tau}^{1}$, (i) the index set for sectors \mathbf{N}, (ii) the index set for firms in each sector \mathbf{N}_{i}, (iii) each sectoral aggregator, (iv) every firm-level production function in each sector, and (v) the shape of the input-output linkages $\boldsymbol{\omega}_{L}$ and Ω do not change.

Assumption $3.1(i)$ is consistent with the focus of this study on ad-valorem subsidies, excluding other competition interventions. Invariance condition (ii) assumes away from endogenous entry and exit in response to the policy change, which is implied by the short-run scope of this paper. Conditions (iii) and (iv) jointly mean that the policy reform does not alter the firms' operating environments, which in turn rules out both direct and indirect impacts of the policy reform on firms' productivities. ${ }^{39}$ Part (v) states that the input-output linkages $\boldsymbol{\omega}_{L}$ and Ω do not reshape in reaction to the policy reform. This again accords with the scope of my analysis and also resonates with the existing literature that assumes the production network to be stable over a period of time (e.g., Baqaee and Farhi 2020).

3.2 Household

Consider a representative household that consumes a final consumption good, inelastically supplies labor across sectors. The household owns all firms so that it receives firms' profits as dividends. The household derives utility only from consumption of the final good, with the utility function being the standard.

[^10]Assumption 3.2 (Utility Function). The consumer's utility function is strictly monotonic and continuously differentiable in the final consumption good.

Assumption 3.2 means that there exists a one-to-one mapping between the utility level and consumption of the final good. Based on this preference, the household chooses the utility-maximizing quantity of the final consumption good subject to the binding budget constraint:

$$
\begin{equation*}
C=W L+\Pi-T, \tag{8}
\end{equation*}
$$

where Π is firm's total profit, and T indicates the tax payment to the government in the form of a lump-sum transfer. I let the price index of the final consumption good be the numeraire.

3.3 Technologies

Economy-wide and sectoral aggregations. The economy-wide aggregator collects sectoral intermediate goods to produce a final consumption good Y using the production function \mathcal{F} :

$$
\begin{equation*}
Y=\mathcal{F}\left(\left\{X_{i}\right\}_{i \in \mathbf{N}}\right), \tag{9}
\end{equation*}
$$

where $\mathcal{F}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}$, and X_{i} represents sector i 's intermediate good used for the production of the final consumption good. In each sector $i \in \mathbf{N}$, firm-level products are aggregated into a single sectoral good Q_{i} according to

$$
\begin{equation*}
Q_{i}=F_{i}\left(\left\{q_{i k}\right\}_{k \in \mathbf{N}_{i}}\right), \tag{10}
\end{equation*}
$$

where $F_{i}: \mathbb{R}_{+}^{N_{i}} \rightarrow \mathbb{R}_{+}$represents the sector-specific aggregator that collects firms' products in sector i and $q_{i k}$ denotes the quantity of firm k 's product. ${ }^{40}$

This aggregator satisfies the following standard assumptions.

Assumption 3.3 (Economy-Wide and Sectoral Aggregators). (i) The economy-wide aggregation function \mathcal{F} is increasing and concave in each of its arguments. (ii) For each $i \in \mathbf{N}$, the sectoral aggregator F_{i} is a) twice continuously differentiable and b) increasing and concave in each of its arguments.

[^11]Notice Assumption 3.3 does not require the sectoral aggregator F_{i} to exhibit constant returns to scale, unlike in Liu (2019) and Bigio and La'O (2020). Under this assumption, both the economy-wide and sectoral aggregators operate in perfectly competitive markets. The price index of sector i 's good P_{i} is defined through the sectoral cost-minimization problem. ${ }^{41}$

A sectoral aggregator serves two purposes. First, it is a useful modeling device that allows us to unite firms' differentiated goods into a single homogeneous good (Bigio and La'O 2020; La'O and Tahbaz-Salehi 2022). The economic content of this aggregation is that every buyer of goods from sector i purchases the same bundle of goods produced by the firms in that sector (Liu 2019). Second, from the perspective of an individual firm, the sectoral aggregator acts as a "demand function" through which the firm's strategic interaction is mediated.

In order to make the model amenable to empirical analysis while maintaining flexibility, I restrict the sectoral aggregator to take the form of a homothetic demand system with a single aggregator (HSA; Matsuyama and Ushchev 2017).

Assumption 3.4 (HSA Inverse Demand Function). In each sector $i \in \mathbf{N}$, the sectoral aggregator F_{i} exhibits an HSA inverse demand function; that is, the inverse demand function faced by firm $k \in \mathbf{N}_{i}$ is given by

$$
\begin{equation*}
p_{i k}=\frac{\Phi_{i}}{q_{i k}} \Psi_{i}\left(\frac{q_{i k}}{A_{i}\left(\mathbf{q}_{i}\right)} ; \mathcal{I}_{i}\right) \quad \text { with } \quad \sum_{k^{\prime}=1}^{N_{i}} \Psi_{i}\left(\frac{q_{i k^{\prime}}}{A_{i}\left(\mathbf{q}_{i}\right)} ; \mathcal{I}_{i}\right)=1 \tag{11}
\end{equation*}
$$

where Φ_{i} is a constant indicating the expenditure by sector i 's aggregator, Ψ_{i} represents the share of firm k 's good in the expenditure of sector i 's aggregator, and $A_{i}\left(\mathbf{q}_{i}\right)$ denotes the aggregate quantity index capturing interactions between firms' choices with $\mathbf{q}_{i}:=\left\{q_{i k^{\prime}}\right\}_{k^{\prime} \in \mathbf{N}_{i}}$.

From an individual firm's perspective, the quantity index $A_{i}\left(\mathbf{q}_{i}\right)$ in (11) summarizes the firm's interactions in sector i, and this is the only channel through which other firms' choices matter to the firm's own decision. ${ }^{42}$ Put differently, Assumption 3.4 rules out the possibility that any other firm's quantity enters the firm's inverse demand independently of $A_{i}\left(\mathbf{q}_{i}\right)$. In this sense, $A_{i}\left(\mathbf{q}_{i}\right)$ acts as a sufficient statistic for other firms' choices, as in Amiti et al. (2014) and Arkolakis et al. (2019).

Assumption 3.4 is slightly stronger than the original definition by Matsuyama and Ushchev (2017)

[^12]and requires that unobservable heterogeneity in the sectoral aggregator $F_{i}(\cdot)$ is equally imposed on all products. ${ }^{43}$ Nevertheless, notice that this assumption does not imply that the inverse demand function is common to all firms because the quantity index function $A_{i}(\cdot)$ is allowed to be asymmetric in its arguments.

The HSA specification (11) is broad enough to accommodate a wide variety of aggregators, including those that are commonly used in the international trade literature - for example, the constant elasticity of substitution (CES), the symmetric translog (Feenstra and Weinstein 2017), the constant response demand (Mrázová and Neary 2017, 2019), and the flexible class of non-CES homothetic aggregators explored in Kimball (1995), Burstein and Gopinath (2014), and Arkolakis et al. (2019). ${ }^{44}$

Example 3.1 (CES aggregator). The CES aggregator is routinely assumed in the bulk of the macroeconomics literature on international pricing (Atkeson and Burstein 2008; Amiti et al. 2014; Gaubert and Itskhoki 2020). Consider the CES aggregator in sector i :

$$
F_{i}\left(\left\{q_{i k}\right\}_{k \in \mathbf{N}_{i}}\right):=\left(\sum_{k=1}^{N_{i}} \delta_{i k}^{\sigma_{i}} q_{i k}^{\frac{\sigma_{i}-1}{\sigma_{i}}}\right)^{\frac{\sigma_{i}}{\sigma_{i}-1}}
$$

where σ_{i} represents the elasticity of substitution specific to sector i, and $\delta_{i k}$ is a demand shifter specific to firm k 's product. Associated with this is the residual inverse demand curve faced by firm k :

$$
\begin{equation*}
p_{i k}=\frac{\delta_{i k} q_{i k}^{-\frac{1}{\sigma_{i}}}}{\sum_{k^{\prime}=1}^{N_{i}} \delta_{i k^{\prime}} q_{i k^{\prime}}^{-\frac{1}{\sigma_{i}}}} R_{i}, \tag{12}
\end{equation*}
$$

where R_{i} is the total expenditure to sector i 's good. Suppose $\delta_{i}=\delta_{i k}=\delta_{i k^{\prime}}$ for all $k, k^{\prime} \in \mathbf{N}_{i}$. Acknowledging that $R_{i}=\Phi_{i}$ and letting $A_{i}\left(\mathbf{q}_{i}\right):=\left(\sum_{k^{\prime}=1}^{N_{i}} \delta_{i} q_{i k^{\prime}}^{-\frac{1}{\sigma_{i}}}\right)^{\frac{\sigma_{i}}{\sigma_{i}-1}}$, Assumption 3.4 is satisfied with $\Psi_{i}\left(x ; \mathcal{I}_{i}\right):=\delta_{i} x^{\frac{\sigma_{i}-1}{\sigma_{i}}}$ for all $x \in \mathscr{S}_{i}$.

Firm-level production. The firm-level production process combines labor and material inputs, where the latter is a composite of sectoral intermediate goods along the production network. It is assumed that all inputs are variable (i.e., firms do not incur fixed costs). To focus on the short-run behavior, I do not model the firms' entry decisions; instead, I assume that each sector is populated by an exogenously fixed number of firms that are heterogeneous in productivities.

[^13]In the output market of each sector, firms engage in a Cournot competition of complete information, while they are perfectly competitive in the input markets. Thus, each firm first chooses its output quantity so as to maximize its profits in the Cournot-quantity competition, followed by input decisions based on cost-minimization problems under the constraint of output quantity.

The production technology for firm k in sector i is described by

$$
\begin{equation*}
q_{i k}=z_{i k} f_{i}\left(\ell_{i k}, m_{i k}\right) \quad \text { with } \quad m_{i k}=\mathcal{G}_{i}\left(\left\{m_{i k, j}\right\}_{j \in \mathbf{N}}\right) \tag{13}
\end{equation*}
$$

where $q_{i k}, \ell_{i k}$, and $m_{i k}$ denote, respectively, the quantity of gross output, labor input, and material input, $z_{i k}$ is the firm's Hicks-neutral productivity, $m_{i k, j}$ represents the input demand for sector j 's intermediate good, and $f_{i}: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$and $\mathcal{G}_{i}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}$represent the production technologies specific to the sector. ${ }^{45}$ Note that \mathcal{G}_{i} reflects the input-output linkages $\Omega .^{46}$

Example 3.2 (Nested Cobb-Douglas Production Function). The specification (13) includes the nested Cobb-Douglas production function (e.g., Bigio and La'O 2020):

$$
\begin{equation*}
q_{i k}=z_{i k} \ell_{i k}^{\alpha_{i}} m_{i k}^{1-\alpha_{i}} \quad \text { with } \quad m_{i k}=\prod_{j=1}^{N} m_{i k, j}^{\gamma_{i, j}} \tag{14}
\end{equation*}
$$

where α_{i} stands for labor share specific to the sector, and $\gamma_{i, j}$ is the share of sector j 's good in the material input used by sector i with $\sum_{j=1}^{N} \gamma_{i, j}=1$. In this setup, $\omega_{i, L}=\alpha_{i}$ and $\omega_{i, j}=\left(1-\alpha_{i}\right) \gamma_{i, j}$.

Notice that both aggregators f_{i} and \mathcal{G}_{i} are only traced by sector index i, meaning that firms in the same sector i have access to the same production technologies up to the idiosyncratic heterogeneous productivity $z_{i k}$. This also implies that producer-side heterogeneity pertaining to product differentiation (e.g., quality) is encoded in the productivity term $z_{i k} .{ }^{47}$

Assumption 3.5 (Firm-Level Production Functions). For each sector $i \in \mathbf{N}$, both aggregators f_{i} and \mathcal{G}_{i} (i) display constant returns to scale, (ii) are twice continuously differentiable in all arguments, (iii) are increasing and concave in each of its arguments, and (iv) satisfy $f_{i}(0,0)=0$ and $\mathcal{G}_{i}(\mathbf{0})=0$. Moreover, (v) for each firm $k \in \mathbf{N}_{i}$ in sector i, it holds that $\left(\frac{\partial f_{i}(\cdot)}{\partial \ell_{i k}}\right)^{2} \frac{\partial^{2} f_{i}(\cdot)}{\partial m_{i k}^{2}}+\left(\frac{\partial f_{i}(\cdot)}{\partial m_{i k}}\right)^{2} \frac{\partial^{2} f_{i}(\cdot)}{\partial \ell_{i k}^{2}}-2 \frac{\partial f_{i}(\cdot)}{\partial \ell_{i k}} \frac{\partial f_{i}(\cdot)}{\partial m_{i k}} \frac{\partial^{2} f_{i}(\cdot)}{\partial \ell_{i k} \partial m_{i k}}<0$

[^14]for all $\left(\ell_{i k}, m_{i k}\right) \in \mathbb{R}_{+}^{2}$.

Assumptions $3.5(i)-(i v)$ jointly state that the aggregators f_{i} and \mathcal{G}_{i} are neoclassical, an assumption employed in Bigio and La'O (2020)..48 Assumption (v) guarantees an interior solution for the firm's cost minimization problem.

Importantly, when a firm decides the quantity of output, it also takes into account its input decisions in a forward-looking way. Thus, the firm's decision problem proceeds backward. First, taking the quantities of output and material input and sectoral price indices as given, the firm's optimal demand for sectoral intermediate goods is given by

$$
\begin{equation*}
\left\{m_{i k, j}^{*}\right\}_{j \in \mathbf{N}} \in \underset{\left\{m_{i k, j}\right\}_{j \in \mathbf{N}}}{\arg \min } \sum_{j=1}^{N}\left(1-\tau_{i}\right) P_{j} m_{i k, j} \quad \text { s.t. } \quad \mathcal{G}_{i}\left(\left\{m_{i k, j}\right\}_{j \in \mathbf{N}}\right) \geq \bar{m}_{i k} \tag{15}
\end{equation*}
$$

where $m_{i k, j}^{*}$ denotes the optimal level of purchase of sector j 's good, and $\bar{m}_{i k}$ indicates the level of material input corresponding to a given quantity of output. Note that the unit cost condition associated with (15) defines the cost index of material input P_{i}^{M} gross of the policy $\boldsymbol{\tau}$.

Second, taking the output quantity and input prices as given, the optimal input quantities for firm k in sector i are given by

$$
\begin{equation*}
\left\{\ell_{i k}^{*}, m_{i k}^{*}\right\} \quad \in \quad \underset{\left\{\ell_{i k}, m_{i k}\right\}}{\arg \min } \quad W \ell_{i k}+P_{i}^{M} m_{i k} \quad \text { s.t. } \quad z_{i k} f_{i}\left(\ell_{i k}, m_{i k}\right) \geq \bar{q}_{i k} \tag{16}
\end{equation*}
$$

where W denotes the wage ${ }^{49}$ and $\bar{q}_{i k}$ is a given level of output quantity.

Remark 3.1. Input decisions (15) and (16) are separated purely for expositional purposes. These two problems can be collapsed into a single cost-minimization problem, in which labor input and demand for sectoral goods are chosen simultaneously.

Third, taking the competitors' quantity choices and aggregate variables as given, firm k in sector i chooses the quantity of output $q_{i k} \in \mathscr{S}_{i}:=\mathbb{R}_{+} \cup\{+\infty\}$ to maximize its profit. ${ }^{50}$ Let $\pi_{i k}\left(\cdot, \cdot ; \mathcal{I}_{i}\right)$: $\mathscr{S}_{i} \times \mathscr{S}_{i}^{N_{i}-1} \rightarrow \mathbb{R}$ represent firm k 's profit function that maps its own quantity choice $q_{i k}$ and competitors'

[^15]choices $\mathbf{q}_{i,-k}:=\left\{q_{i k^{\prime}}\right\}_{k^{\prime} \in \mathbf{N}_{i} \backslash\{k\}}$ to the profit under the information set \mathcal{I}_{i} :
$$
\mathcal{I}_{i}:=\left\{Y,\left\{X_{j}\right\}_{j \in \mathbf{N}},\left\{Q_{j}\right\}_{j \in \mathbf{N} \backslash\{i\}}, W, P_{i}^{M},\left\{z_{i k}\right\}_{k \in \mathbf{N}_{i}}, \boldsymbol{\omega}_{L}, \Omega, \boldsymbol{\tau}\right\} .
$$

The construction of \mathcal{I}_{i} reflects the fact that when firms in sector i make quantity decisions, they take these aggregate variables as fixed while internalizing the possibility of the sectoral aggregate quantity Q_{i} and the associated price index P_{i} varying as a result of their own decisions. ${ }^{51}$ Note that the sectoral cost index for material input P_{i}^{M} is taken as given. All sectoral price indices $\left\{P_{j}\right\}_{j \in \mathbf{N}}$ are determined to be consistent with all sectoral cost indices for material input $\left\{P_{j}^{M}\right\}_{j \in \mathbf{N}}$ in the aggregate equilibrium. The inclusion of the firms' productivities $\left\{z_{i k}\right\}_{k \in \mathbf{N}_{i}}$ partly embodies the complete information structure of the strategic interaction. For each $i \in \mathbf{N}$, the Cournot-Nash equilibrium quantities $\mathbf{q}_{i}^{*}:=\left\{q_{i k}^{*}\right\}_{k \in \mathbf{N}_{i}}$ must satisfy the following system of equations:

$$
\begin{equation*}
q_{i k}^{*}=\underset{q}{\arg \max } \quad \pi_{i k}\left(q, \mathbf{q}_{i,-k} ; \mathcal{I}_{i}\right) \quad \forall k \in \mathbf{N}_{i} \tag{17}
\end{equation*}
$$

The existence of Cournot-Nash equilibria in each sector immediately follows from the Debreu-GlicksbergFan theorem (Debreu 1952; Fan 1952; Glicksberg 1952).

3.4 Government

The government sets the level of subsidies $\boldsymbol{\tau}$ under the balanced budget. Government expenditures consist of two components. First, the government purchases the final consumption good, which can be conceived as public spending G. The second element refers to the total policy expenditure S_{i} in sector i. The residual between these two expenditures is charged to the representative consumer in the form of a lump-sum $\operatorname{tax} T$. Hence, the government's budget constraint is

$$
\begin{equation*}
G+\sum_{i=1}^{N} S_{i}=T \quad \text { where } \quad S_{i}:=\sum_{k=1}^{N_{i}} \sum_{j=1}^{N} \tau_{i} P_{j} m_{i k, j} . \tag{18}
\end{equation*}
$$

3.5 Equilibria

[^16]
3.5.1 Market Clearing

Since the final consumption good is either consumed by the household or purchased by the government, the market clearing condition for the final consumption good reads

$$
\begin{equation*}
Y=C+G . \tag{19}
\end{equation*}
$$

Substituting (8) and (18) into (19), it follows that

$$
\begin{equation*}
Y=W L+\Pi-\sum_{i=1}^{N} S_{i}, \tag{20}
\end{equation*}
$$

which is nothing but the income accounting identity of GDP.
Sectoral intermediate goods are used either for producing the final consumption good or as input in an individual firm's production: for each $j \in \mathbf{N}$,

$$
\begin{equation*}
Q_{j}=X_{j}+\sum_{i=1}^{N} \sum_{k=1}^{N_{i}} m_{i k, j} \tag{21}
\end{equation*}
$$

Labor L is assumed to be inelastically supplied, fully employed, and frictionlessly mobile across sectors and firms, thus satisfying

$$
\begin{equation*}
L=\sum_{i=1}^{N} \sum_{k=1}^{N_{i}} \ell_{i k} . \tag{22}
\end{equation*}
$$

3.5.2 Equilibria Defined

I assume that subsidies $\boldsymbol{\tau}$ are exogenously determined (by the government). ${ }^{52}$ Under Assumption 3.1, the numbers of sectors N and firms N_{i}, firm's productivities $z_{i k}$, and the network structures $\boldsymbol{\omega}_{L}$ and Ω are invariant to a policy shift, while other aggregate variables are endogenously determined in equilibrium. Defining the equilibria in this model amounts to finding a fixed point in the endogenous firm-level and aggregate variables. I use the $\operatorname{symbol} *$ to denote the equilibrium values.

Definition 3.1 (General Equilibria). Given the realization of firms' productivities $\left\{\left\{z_{i k}\right\}_{k \in \mathbf{N}_{i}}\right\}_{i \in \mathbf{N}}$, sectorspecific subsidies $\boldsymbol{\tau}$, and the input-output linkages $\boldsymbol{\omega}_{L}$ and Ω, the general equilibria of this model are defined as fixed points that solve the following problems:

[^17]Sectoral equilibria: For each sector i, given the information set \mathcal{I}_{i}, the solution to the quantitysetting game (17) yields a vector of sectoral Cournot-Nash equilibrium quantities $\left\{q_{i k}^{*}\right\}_{k \in \mathbf{N}_{i}}$, followed by the cost-minimization problems (15) and (16) to derive the optimal labor and material inputs $\left\{\ell_{i k}^{*}, m_{i k}^{*}\right\}_{k \in \mathbf{N}_{i}}$, and input demand for sectoral intermediate goods $\left\{\left\{m_{i k, j}^{*}\right\}_{j \in \mathbf{N}}\right\}_{k \in \mathbf{N}_{i}}$.

Aggregate equilibria: Given a collection of sectoral equilibrium quantities $\left\{q_{i k}^{*}, \ell_{i k}^{*}, m_{i k}^{*},\left\{m_{i k, j}^{*}\right\}_{j \in \mathbf{N}}\right\}_{i, k}$, an aggregate equilibrium is referenced by the set of aggregate quantities $\left\{Y^{*},\left\{X_{j}^{*}, Q_{j}^{*}\right\}_{j \in \mathbf{N}}\right\}$ together with the set of aggregate prices $\left\{W^{*},\left\{P_{j}^{*}\right\}_{j \in \mathbf{N}}\right\}$, such that i) the household maximizes its utility subject to (8), ii) the income accounting identity (20) holds, and iii) the market clearing conditions for composite intermediate goods (21) and labor (22) are satisfied. ${ }^{53}$

3.6 The Object of Interest

Recall from Section 3.1 that the policymaker hopes to learn how much GDP would change due to the policy reform from τ_{n}^{0} to τ_{n}^{1}. Let $Y^{\boldsymbol{\tau}}$ be the country's GDP in equilibrium under policy regime $\boldsymbol{\tau}$. From (20) and (22), it follows that

$$
\begin{equation*}
Y^{\tau}=\sum_{i=1}^{N} Y_{i}(\boldsymbol{\tau}) \quad \text { where } \quad Y_{i}(\boldsymbol{\tau}):=\sum_{k=1}^{N_{i}}\left(W^{*} \ell_{i k}^{*}+\pi_{i k}^{*}-\sum_{j=1}^{N} \tau_{i} P_{j}^{*} m_{i k, j}^{*}\right), \tag{23}
\end{equation*}
$$

where $\pi_{i k}$ stands for firm k 's profit. In (23), $Y_{i}(\boldsymbol{\tau})$ can be viewed as sectoral i 's GDP, with each of its summands corresponding to an individual firm's contribution. ${ }^{54}$

Now the object of interest $\Delta Y\left(\tau_{n}^{0}, \tau_{n}^{1}\right)$ is defined as

$$
\begin{equation*}
\Delta Y\left(\tau_{n}^{0}, \tau_{n}^{1}\right):=\sum_{i=1}^{N} Y_{i}\left(\boldsymbol{\tau}^{1}\right)-\sum_{i=1}^{N} Y_{i}\left(\boldsymbol{\tau}^{0}\right) \tag{24}
\end{equation*}
$$

While a variety of "causal effects" of an industrial policy have been proposed in the empirical treatmenteffect literature, they do not necessarily speak to policy-relevant questions such as those considered in this paper. ${ }^{55}$ The policy parameter (24) directly compares the country's GDP under $\boldsymbol{\tau}^{0}$ to that under τ^{1} and thus answers the important macroeconomic question. A virtue of this parameter is that under

[^18]Assumption 3.1, it represents an intensive-margin causal effect of the policy reform in the sense of a ceteris paribus change in an outcome variable across different policy regimes (Marshall 1890). The construction of (24) shares the same vein with the policy-relevant treatment effect (Heckman and Vytlacil 2001, 2005, 2007).

Remark 3.2. The growth rate $\% \Delta Y\left(\tau_{n}^{0}, \tau_{n}^{1}\right)$ of the kind studied in Arkolakis et al. (2012) and Adão et al. (2017) can be obtained as $\% \Delta Y\left(\tau_{n}^{0}, \tau_{n}^{1}\right):=\frac{1}{Y^{\tau^{0}}} \Delta Y\left(\tau_{n}^{0}, \tau_{n}^{1}\right)$.

4 Data

This section briefly describes the dataset used in my empirical analysis and the procedures by which I construct the empirical counterparts to the variables in my framework. ${ }^{56}$ My dataset spans between 2007 and 2021, but I do not exploit its time-series feature; rather, I regard it as a collection of snapshots of the same economy with varying levels of subsidies. In this way, I can construct "repeated samples." I assume that the observations are generated from an equilibrium (see Assumption 5.1).

4.1 Wage and Price Indices

Data on wage and labor hours worked are taken from the U.S. Bureau of Labor Statistics (BLS) through the Federal Reserve Bank of St. Louis (FRED) at an annual frequency. Consistent with my conceptual framework, I use the average hourly earnings of all employees as my data counterpart for the wage $W^{*} .{ }^{57}$ I obtain data on sectoral price index P_{i}^{*} from the GDP by industry data at the Bureau of Economic Analysis (BEA), wherein the industries in the BEA data are used as the empirical counterparts of sectors in my framework.

4.2 Input-Output Tables

Following Baqaee and Farhi (2020), I adopt the annual U.S. input-output data from the BEA, omitting the government, noncomparable imports, and second-hand scrap industries. The data contain industrial output and input for 66 industries and cover the period from 1995 to 2015. I further follow Gutiérrez and Philippon (2017) in segmenting the industries into a coarser categories, leaving us with 38 industries.

[^19]Each input-output account comes with two distinct tables, namely, the use and supply tables. The use table reports the amounts of commodities used by each industry as intermediate inputs and by final user, and the value added by each industry. The value-added section of the use table includes compensation of employees and taxes on products less subsidies for each purchaser industry. Each cell in the supply table indicates the amount of each commodity produced by each industry.

To transform the use table into an industry-by-industry format, I make the following assumption: each product has its own specific sales structure, irrespective of the industry where it is produced (Assumption B.1). Here, the sales structure refers to the shares of the respective intermediate and final users in the sales of a commodity. Under this assumption, I can convert the commodity-by-industry use table to the industry-by-industry table, thereby conforming to my conceptual model of the production network Ω (see Appendix B.2.1 for details). Using the compensation of employees, I can also construct data for $\boldsymbol{\omega}_{L} .{ }^{58}$ The transformed input-output table can further be used to back out data for $\boldsymbol{\tau}$ as a value-added net subsidy, which is understood as an amalgamate of sales and input subsidies.

4.3 Compustat Data

The dataset for firm-level variables is Compustat, which is assembled by $\mathrm{S} \& \mathrm{P}$ and provided by Wharton Research Data Services (WRDS). The Compustat data record information about firm-level financial statements, such as sales, input expenditure, capital stock information, and detailed industry activity classifications, from 1950 to 2016 . From this data, in conjunction with the data on aggregate variables, I first construct measurements for firm-level revenue $r_{i k}^{*}$, labor $\ell_{i k}^{*}$, and material $m_{i k}^{*}$ inputs. I follow De Loecker et al. (2020) in eliminating outliers.

Since, however, the dataset does not offer a further breakdown of material input, I need to apportion the expenditure on material input to generate separate information about the demand for sectoral intermediate goods. This requires an explicit functional-form assumption on the material input aggregator \mathcal{G}_{i} in (13). In this paper, I employ a Cobb-Douglas production function:

$$
\begin{equation*}
m_{i k}=\prod_{j=1}^{N} m_{i k, j}^{\gamma_{i, j}} \tag{25}
\end{equation*}
$$

where $m_{i k, j}$ is sector j 's intermediate good demanded by firm k in sector i and $\gamma_{i, j}$ denotes the input share of sector j 's intermediate good with $\sum_{j=1}^{N} \gamma_{i, j}=1$. A virtue of this specification is that the pro-

[^20]duction network across sectoral intermediate goods $\left\{\omega_{i, j}\right\}_{j \in \mathbf{N}}$ is directly reflected in the output elasticity parameters $\left\{\gamma_{i, j}\right\}_{j \in \mathbf{N}}$, which are constant. ${ }^{59}$ This property is plausible in light of the particular focus of this paper on the short-run effects of the policies. ${ }^{60}$ Under this specification, the input demand for sector j 's good $m_{i k, j}^{*}$ is given by
\[

$$
\begin{equation*}
m_{i k, j}^{*}=\gamma_{i, j} \frac{P_{i}^{M^{*}}}{\left(1-\tau_{i}\right) P_{j}^{*}} m_{i k}^{*} \tag{26}
\end{equation*}
$$

\]

where $P_{i}^{M^{*}} m_{i k}^{*}$ indicates the expenditure on material input gross of subsidies, which can be obtained in the data (see Fact B.5). ${ }^{61}$

I admit the possibility that the data on firm-level revenues and costs are subject to measurement errors. ${ }^{62}$ Importantly, the Compustat data do not provide information about output quantity and price. To recover these variables from the observables that are possibly prone to measurement errors, I leverage a methodology that has recently been developed in the industrial organization literature (see Section 5.2).

5 Identification and Estimation

This section discusses identification of the object of interest (24) based on the model laid out in Section 3 and the dataset described in Section 4. The identification results are constructive, which naturally validates the use of nonparametric plug-in estimators.

To simplify the identification analysis, I make two sets of assumptions. First, since the inverse demand functions faced by firms are left unspecified beyond the HSA specification (11), the best response functions (17) can be highly nonlinear in competitors' choices, which raises a concern about the multiplicity of equilibria. To sidestep this issue, I impose assumptions on the equilibrium selection probability. Second, I focus on a situation where the policymaker is only interested in changing the policy within the historically observed support. Let $\mathscr{T}:=\times_{i=1}^{N} \mathscr{T}_{i}$ where $\mathscr{T}_{i} \subseteq \mathbb{R}$ represents the observed support of τ_{n}.

Assumption 5.1 (Equilibrium Selection). (i) The observations in the data are generated from a single

[^21]equilibrium. (ii) The equilibrium that is played does not change over the course of the policy reform.
Assumption 5.2 (Support Condition). $\left[\tau_{n}^{0}, \tau_{n}^{1}\right] \subseteq \mathscr{T}_{n}$
Assumption 5.1 (i) states that the equilibrium selection probability is degenerated to a single equilibrium, and the condition (ii) means that it is this single equilibrium that will be chosen in the policy counterfactuals. ${ }^{63}$ Assumption 5.1 is widely used in the literature of discrete choice models (Aguirregabiria and Mira 2010). ${ }^{64}$ Assumption 5.2 excludes the scenario that the new policy is such a policy that has never been implemented before. Assumptions 5.1 and 5.2 could jointly be relaxed at the expense of additional assumptions, as studied by Canen and Song (2022). ${ }^{65}$

To solve the evaluation problem, it is essential to distinguish the policymaker's (or the observing econometrician's) information set from the agent's information set. ${ }^{66}$ In light of Sections 3 and 4, the policymaker's information set \mathcal{I}^{G} is defined as

$$
\mathcal{I}^{G}:=\left\{Y^{*},\left\{X_{j}^{*}\right\}_{j \in \mathbf{N}},\left\{Q_{j}^{*}\right\}_{j \in \mathbf{N}}, W,\left\{P_{j}^{*}\right\}_{j \in \mathbf{N}}, \boldsymbol{\omega}_{L}, \Omega, \boldsymbol{\tau}^{0}, \boldsymbol{\tau}^{1},\left\{\left\{r_{j k}, \ell_{j k}^{*}, m_{j k}^{*}\right\}_{k \in \mathbf{N}_{j}}\right\}_{j \in \mathbf{N}}\right\}
$$

Several remarks on this information set are in order. First, the inclusion of $\boldsymbol{\tau}^{1}$ reflects the premise that the policy variables can be manipulated by the policymaker. Second, the firm's equilibrium revenue $r_{i k}^{*}$ is not available in \mathcal{I}^{G}; and the observed firm's revenue $r_{i k}$ is contaminated by a measurement error. Third, the firm's productivity $z_{i k}$ is not known to the policymaker by definition (Section 3). Lastly, the firm's equilibrium output price $p_{i k}^{*}$ and quantity $q_{i k}^{*}$ are not included in \mathcal{I}^{G} due to the construction of data (Sections 4).

5.1 Identification Strategy

Under Assumptions 3.1 and 5.2, the object of interest (24) is equivalently rewritten as

$$
\begin{equation*}
\Delta Y\left(\tau_{n}^{0}, \tau_{n}^{1}\right)=\sum_{i=1}^{N} Y_{i}\left(\boldsymbol{\tau}^{1}\right)-\sum_{i=1}^{N} Y_{i}\left(\boldsymbol{\tau}^{0}\right)=\sum_{i=1}^{N} \int_{\boldsymbol{\tau}^{0}}^{\boldsymbol{\tau}^{1}} \frac{d Y_{i}(s)}{d s} d s \tag{27}
\end{equation*}
$$

[^22]Our identification argument builds on (27) and aims to identify the integrand $\frac{d Y_{i}(s)}{d s}$ for all $s \in\left[\boldsymbol{\tau}^{0}, \boldsymbol{\tau}^{1}\right]$. Total differentiation of (23) at an arbitrary point $\boldsymbol{\tau} \in\left[\boldsymbol{\tau}^{0}, \boldsymbol{\tau}^{1}\right]$ delivers

$$
\begin{equation*}
\left.\frac{d Y_{i}(s)}{d s}\right|_{s=\boldsymbol{\tau}}=\sum_{k=1}^{N_{i}}\left\{\frac{d\left(p_{i k}^{*} q_{i k}^{*}\right)}{d \tau_{n}}-\sum_{j=1}^{N} \frac{d\left(P_{j}^{*} m_{i k, j}^{*}\right)}{d \tau_{n}}\right\},{ }^{67} \tag{28}
\end{equation*}
$$

where the first term on the right-hand side represents the marginal change in firm k 's revenue, and the second term indicates the marginal change in the value of sectoral intermediate goods used by firm k. Intuitively, (28) states that the responsiveness of sectoral GDP is equivalent to the sum of the marginal changes in firms' revenues minus the marginal changes in firms' expenditures net of subsidies.

The existing approach to recover (28) is to characterize its left-hand side in terms of aggregate variables that are directly observed in the data (e.g., Arkolakis et al. 2012, 2019; Adão et al. 2020). Their aggregation results crucially hinge on the modeling assumption of a mass of continuum of firms. Under this assumption, individual firms are infinitesimally small and thus inconsequential to the aggregate variables owing to the law of large numbers (Gaubert and Itskhoki 2020). By contrast, my framework embraces only a finite number of firms, in which case firm-level idiosyncrasies are not washed away even in the aggregate. My approach is rather to recover each of the firm-level responses on the right-hand side of (28). In doing so, I apply the control function approach that has been developed in the industrial organization literature. As a by-product, the characterization result of this paper does not rely on the approximation of (28) around the economy with no pre-existing policies (i.e., $\boldsymbol{\tau}^{0}=\mathbf{0}$), as employed in Liu (2019) and Baqaee and Farhi (2022).

Remark 5.1. (i) The idea behind (28) resembles the exact hat algebra (Dekle et al. 2007, 2008), a method that is routinely used to generate a counterfactual prediction in the literature (e.g., Caliendo and Parro 2015; Adão et al. 2017, 2020). ${ }^{68}$ My approach is distinct in two ways, however. First, the exact hat algebra is not principally concerned with the identification and estimation of the comparative statics; it only calculates the comparative statics taking model parameters as known (Dingel and Tintelnot 2023). My paper provides a unified framework for the identification and estimation of both "model parameters" and the comparative statics. Second, the presumption of exact hat algebra is that all endogenous equilibrium variables are observable. This requirement, however, is not fulfilled in my case as firm-level quantity $q_{i k}^{*}$ and price $p_{i k}^{*}$ are not available in the data (see Section 4). In Section 5.2, I provide a path forward

[^23]to move on in the presence of these unobservable endogenous variables. (ii) The left-hand side of (28) alone may be of limited practical relevance because it only measures the impact of an infinitesimally small policy change around $\boldsymbol{\tau}^{0}$ (e.g., Caliendo and Parro 2015). My target parameter (24), in contrast, can be used to analyze a large policy reform from $\boldsymbol{\tau}^{0}$ to $\boldsymbol{\tau}^{1} .{ }^{69}$ (iii) While useful as an approximation around the equilibrium in response to a small shock, the common practice of setting $\boldsymbol{\tau}^{0}=\mathbf{0}$ (e.g., Liu 2019; Baqaee and Farhi 2022) is rarely feasible in empirical research because in most cases it is that $\mathbf{0} \notin \mathscr{T} . .^{70}$

Remark 5.2. (i) The target parameter (24) is analogous to the one considered in the welfare gains literature such as Arkolakis et al. (2012) and Adão et al. (2020). But my framework is conceptually distinct from these works. Typically, the literature proceeds in three steps. First, the welfare gains (e.g., changes in real income) from shocks are expressed in terms of observable or estimable variables. For example, Arkolakis et al. (2012) characterizes the welfare gain $\% \Delta \mathcal{W}$ of moving to autarky in terms of the "trade elasticity" ε and the domestic absorption share λ : e.g., $\% \Delta \mathcal{W}=1-\lambda^{1 / \varepsilon}$. Second, the literature estimates the trade elasticity $\hat{\varepsilon}$ from data, while λ is usually directly observed in data. Lastly, the estimate is plugged in back to the characterization formula, e.g., $\widehat{\% \Delta \mathcal{W}}=1-\lambda^{1 / \hat{\varepsilon}}$.

In identifying and estimating the trade elasticity, the literature assumes that the policy variables are a realization from a well-defined probability distribution. Although justified by their focuses on the welfare gains from "shocks," this assumption may not conform to the ex ante policy evaluation in two ways. First, this assumption deprives the policymaker of control over the policy variables. Second, the characterization formula merely corresponds to one realization of (infinitely) many possible welfare gains because ex ante the values of the policy variables are known to the policymaker (or the econometrician) only up to their probabilistic properties. This means that the characterization formula is only useful if the object of interest is the ex post assessments of the responses to shocks (e.g., policy shocks caused by foreign authorities). ${ }^{71}$

By contrast, my framework builds on the premise that the policy changes are chosen on the basis of the policymaker's own will (e.g., policy reforms by the domestic government). In this sense, this paper complements the welfare gains literature. Moreover, this paper naturally fits into the problem of optimal

[^24]policy design.
(ii) For the purpose of identification and estimation, the welfare gains literature typically exploits variation in fundamentals (e.g., policy variables), consistent with its focus on "shocks." My framework treats the policy variables as given and instead utilizes the variation in firms' productivities, which are assumed to be heterogenous (see Section 3.3). Note that while firms' productivities are unobservable to the policymaker, they can be translated into firms' input choices, which are observable, through a control function (see Section 5.2).

5.2 Identification

Identifying (28) proceeds in two steps: namely, the middle and bottom layers. The middle layer delivers comparative statics by solving systems of equations, conditional on the values of firm-level variables, and derivatives of the firm-level production and inverse demand functions (Appendix C.3). Notice here that a) firm-level quantity and price are not observed in my dataset (see Section 4), and b) derivatives of the firm-level production and inverse demand functions are not known by definition (see Section 3). These are recovered in the bottom layer with the aid of techniques from the industrial organization literature. This subsection describes how I address these issues in turn.

First, to recover firm-level price and quantity from the revenue and cost data, I exploit the firm's optimization conditions for the input choices and apply the method developed in Kasahara and Sugita (2020)..72 Applying their method in my context, however, requires an additional assumption because when firms decide their output quantities in the strategic interactions, they foresee the competitors' output and input choices as well as their own input choice, letting the strategic interactions effectively carry over input decisions, a feature absent in Kasahara and Sugita (2020). ${ }^{73}$

To insulate the input decisions from the strategic interactions, I push forward the insight that under the specification of the HSA demand system (11), competitors' choices matter only through a single

[^25]aggregator. ${ }^{74}$ Let \mathscr{L}_{i} and \mathscr{M}_{i} denote the observed supports of labor and material inputs, respectively. The following assumption extends the scalar unobservability and strict monotonicity assumptions of the literature (see, e.g., Ackerberg et al. 2015; Gandhi et al. 2019) at the cost of limiting the path by which competitors' productivities enter the firm's quantity decision.

Assumption 5.3. For each $i \in \mathbf{N}$, there exist some functions $\chi_{i}: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathcal{S}_{i}$ and $H_{i}: \mathbb{R}_{+}^{N_{i}} \rightarrow \mathbb{R}$ such that (i) $q_{i k}^{*}=\chi_{i}\left(z_{i k}, H_{i}\left(\mathbf{z}_{i}\right)\right)$ with $\mathbf{z}_{i}:=\left\{z_{i k}\right\}_{k \in \mathbf{N}_{i}}$, and (ii) $\frac{\partial \chi_{i}(\cdot)}{\partial z_{i k}} \neq 1$.

Under Assumption 5.3, there exist some functions $\mathcal{H}_{i}: \mathbb{R}_{+}^{N_{i}} \rightarrow \mathbb{R}$ and $\mathcal{M}_{i}: \mathscr{L}_{i} \times \mathscr{M}_{i} \times \mathbb{R} \rightarrow \mathscr{Z}_{i}$ such that

$$
\begin{equation*}
z_{i k}=\mathcal{M}_{i}\left(\ell_{i k}, m_{i k}, \mathcal{H}_{i}\left(\mathbf{z}_{i}\right) ; \mathcal{I}_{i}\right) \quad \forall k \in \mathbf{N}_{i} . \tag{29}
\end{equation*}
$$

In this sense, Assumptions 5.3 (i) and (ii) correspond, respectively, to the scalar unobservability assumption and the strict monotonicity assumption (e.g., Ackerberg et al. 2015; Gandhi et al. 2019). The expression (29) allows the econometrician to control for unobservable productivity in terms of observable labor and material inputs. The literature resorts to the timing assumption to derive the control function, while the expression (29) stems only from the constraint faced by the cost-minimizing firm.

The equation admits an interpretation analogous to the quantity index $A_{i}(\cdot)$ in Assumption 3.4; that is, $\mathcal{H}_{i}\left(\mathbf{z}_{i}\right)$ is a sufficient statistic for the competitors' productivities, and it can most naturally be understood as a measure of the overall competitiveness of the market. ${ }^{75}$ Given that the information structure of the oligopolistic competition is complete, its value is known to all firms in the same sector but not necessarily known to the econometrician.

Assumption 5.3, together with Assumption 3.4, permits a variety of specifications for both sector- and firm-level production functions. Continuing Examples 3.1 and 3.2, I demonstrate that these assumptions are satisfied in a model widely used in the international trade literature.

Example 5.1 (Duopoly with a CES Sectoral Aggregator). Consider the setup outlined in Examples 3.1 and 3.2. To make my claim as transparent as possible, I focus on the case of duopoly ($k \in\{1,2\}$). In this case, the Cournot-Nash equilibrium prices $\mathbf{p}_{i}^{*}:=\left\{p_{i 1}^{*}, p_{i 2}^{*}\right\}$ satisfy the following system of equations:

[^26]$p_{i k}^{*}=\frac{\sigma}{(\sigma-1)\left(1-s_{i k}\left(\mathbf{p}_{i}^{*}\right)\right)} m c_{i}\left(z_{i k}\right)$, with $s_{i k}\left(\mathbf{p}_{i}^{*}\right):=\frac{\delta_{i}^{\sigma} p_{i k}^{*}{ }^{1-\sigma}}{\delta_{i}^{\sigma} p_{i 1}^{*}{ }^{1-\sigma}+\delta_{i}^{\sigma} p_{i 2}^{*}{ }^{1-\sigma}}$ where $m c_{i}\left(z_{i k}\right):=z_{i k}^{-1} m c_{i}$ is the firm k 's marginal cost that depends on the firm's productivity. ${ }^{76}$ Solving this yields $q_{i k}^{*}=\frac{\sigma-1}{\sigma} R_{i} m c_{i}^{-\sigma} \mathcal{H}_{i}\left(\mathbf{z}_{i}\right) z_{i k}^{\sigma}$, where $\mathcal{H}_{i}\left(\mathbf{z}_{i}\right):=\frac{\delta_{i}^{2} m c_{i}\left(z_{i 1}\right)^{\frac{1-\sigma}{\sigma}} m c_{i}\left(z_{i 2}\right)^{\frac{1-\sigma}{\sigma}}}{\left(\delta_{i} m c_{i}\left(z_{i 1}\right)^{\frac{1-\sigma}{\sigma}}+\delta_{i} m c_{i}\left(z_{i 2}\right)^{\frac{1-\sigma}{\sigma}}\right)^{\frac{\sigma^{2}-\sigma+2}{\sigma}}}$. This conforms to Assumption 5.3 as long as $\sigma \neq 1$.

Taking this expression as given, the input decision is constrained by the production possibility frontier at output level $q_{i k}^{*}: z_{i k} \ell_{i k}^{\alpha_{i}} m_{i k}^{1-\alpha_{i}}=\frac{\sigma-1}{\sigma} R_{i} m c_{i}^{-\sigma} \mathcal{H}_{i}\left(\mathbf{z}_{i}\right) z_{i k}^{\sigma}$. Upon solving this for $z_{i k}$, I obtain $z_{i k}=$ $\left\{\frac{\sigma-1}{\sigma} R_{i} m c_{i}^{-\sigma} \mathcal{H}_{i}\left(\mathbf{z}_{i}\right) \ell_{i k}^{-\alpha_{i}} m_{i k}^{-\left(1-\alpha_{i}\right)}\right\}^{\frac{1}{1-\sigma}}$. Thus, there exists a function \mathcal{M}_{i} such that $z_{i k}=\mathcal{M}_{i}\left(\ell_{i k}, m_{i k}, \mathcal{H}_{i}\left(\mathbf{z}_{i}\right) ; \mathcal{I}_{i}\right)$, yielding the expression (29).

Second, to recover the first- and second-order derivatives of both the firm-level production function and the residual inverse demand functions faced by firms, I exploit the information about the firm's production function. Under the Hicks-neutral productivity specification (14) and CRS assumption (Assumption 3.5), the derivatives of the production functions are pinned down by the markup-augmented cost share, and labor and material inputs through a method developed by Gandhi et al. (2019). Moreover, combining the HSA specification (11) and the identified firm-level quantities and prices, I can also recover the derivatives of the residual inverse demand functions faced by firms, as studied in Kasahara and Sugita (2020).

Theorem 5.1 (Identification of the Object of Interest). Suppose that Assumptions 5.1, 5.2 and 5.3 hold. Then, the object of interest (24) is identified from the observables.

Proof. See Appendix C.5.
A version of Theorem 5.1 remains valid for the case of monopolistic competition with the solution concept being appropriated modified.

Corollary 5.1. Suppose that firms operate within a structure of monopolistic competition in the output market. Then, the object of interest (24) is identified from the observables.

Remark 5.3. Although this paper focuses on the difference in GDP with respect to a policy change (24) as a principal object of policy interest, my framework recovers all firm-level responses - the finest ingredients of the model - and thus can be applied to study other policy parameters. First, the volume of unilateral trade flow from sector j to i is given by $U_{i, j}=\sum_{k=1}^{N_{i}} m_{i k, j}$, so that its response to a policy change is $\frac{d U_{i, j}}{d \tau_{n}}=\sum_{k=1}^{N_{i}} \frac{d m_{i k, j}}{d \tau_{n}}$, where $\frac{d m_{i k, j}}{d \tau_{n}}$ is identified in my framework. Moreover, the volume of bilateral trade

[^27]flow between sector i and j, denoted by $B_{i, j}$, can be analyzed similarly because of $B_{i, j}=U_{i, j}+U_{j, i}{ }^{77}$ Second, the difference in consumption before and after a policy change can be analyzed if government spending is fixed. When G is fixed, totally differentiating (19) yields $\frac{d Y}{d \tau_{n}}=\frac{d C}{d \tau_{n}}$. Third, for the producer side, other types of treatment effects of interest include the average treatment effect on the treated and that on the untreated. ${ }^{78}$ Moreover, it is also possible to identify both the sector- and firm-level distributional causal effects.

5.3 Estimation

Since the identification results demonstrated above are constructive, I build on the analogy principle to obtain a nonparametric estimator for the policy effect (24). ${ }^{79}$ I first nonparametrically estimate the values of the firm-level quantity and price, and the first- and second-order derivatives of the firm's production function. Guided by the theory, I then combine these to derive the nonparametric estimator for (24). Given that the object of interest is continuous with respect to the exogenous variables, the resulting estimator is consistent. The accuracy of my estimator is verified through a numerical simulation in Appendix E.

As stated in Section 4, I acknowledge the possibility that the data on firm-level revenues and costs are contaminated by measurement errors. To purge the measurement errors, my estimation of the firm-level quantity and price follows the convention of the industrial organization literature in applying a polynomial regression of degree two. In estimating the firm's production elasticities, I follow the specification suggested in Gandhi et al. (2019). See Appendix D for the details.

6 Empirical Application: CHIPS and Science Act of 2022

In this section, I bring my framework to the real-world data described in Section 4. As a policy narrative, I investigate the recent episode of the CHIPS and Science Act (CHIPS), which was passed into law in 2022 and aims to invest nearly $\$ 53$ billion in the U.S. semiconductor manufacturing, research and development, and workforce (White House 2023). This policy also includes a 25% tax credit for manufac-

[^28]turing investment, which is projected to provide up to $\$ 24.25$ billion for the next 10 years (Congressional Budget Office 2022). In my model, this tax credit can be analyzed as an additional subsidy targeted at the computer and electronic product manufacturing industry (Appendix B.2.2), which is indexed by n. Simply dividing the estimated $\$ 24.25$ billion by 10 years implies $\$ 2.43$ billion per year. This corresponds to raising the subsidy to $19.23 \% .^{80}$ In my dataset, the historically observed support for a subsidy on this industry is between 3.51% and $16.26 \% .^{81}$

However, analyzing the whole part of this policy requires the researcher to send the value of the subsidy to outside the observed support, while my identification result hinges on the "within the observed support" assumption (Assumption 5.2). Extending my analysis to outside the support is possible at the cost of additional assumptions, as explored in Canen and Song (2022). But this goes beyond the scope of this paper and is left for future work. Instead, the exercise of this section focuses on a part of the CHIPS subsidy. Specifically, I consider a hypothetical policy scenario of increasing the subsidy on the semiconductor industry from the 2021 level of 14.94% to an alternative ratio of 16.00% - equivalent to $\$ 0.56$ billion. ${ }^{82}$ This accounts for approximately one-fourth of the per-year tax credit. ${ }^{83}$ Note that this policy scenario satisfies Assumption 5.2. It is assumed that the semiconductor industry is the only industry that is directly targeted during this policy reform.

The goal of this section is to estimate the change in GDP due to this counterfactual industrial policy as well as to analyze the mechanism behind the estimated policy effect. In Section 6.1, I first calculate the estimate of the policy effect (24). To shed light on the policy relevance of accounting for strategic interactions, I carry out the estimation for both monopolistic and oligopolistic cases. ${ }^{84}$ In Section 6.2, I take advantage of the structural construction of my framework to provide a breakdown of the gains and losses of the policy reform into the sector-level price and quantity effects. To understand the determination of these effects, I further delve into the comovement of sectoral price and material cost indices.

[^29]
6.1 The Policy Effect: Change in GDP

Based on (27), I estimate the change in GDP due to the policy reform from $\tau_{n}^{0}=0.1494$ to $\tau_{n}^{0}=0.1600$. An advantage of my approach is that the responsiveness of GDP can be traced out as a (possibly nonlinear) function of the subsidy over $\left[\tau_{n}^{0}, \tau_{n}^{1}\right]$. For computation purposes, I divide this interval evenly into a fixed number of segments and calculate the estimate according to

$$
\begin{equation*}
\left.\widehat{\Delta Y}\left(\tau_{n}^{0}, \tau_{n}^{1}\right) \approx \sum_{v=0}^{\bar{v}-1} \sum_{i=1}^{N} \frac{d Y_{i}(s)}{d s}\right|_{s=\tau_{n}^{0}+v \Delta \tau_{n}} \times \Delta \tau_{n}, \tag{30a}
\end{equation*}
$$

 number of bins equally segmenting the interval $\left[\tau_{n}^{0}, \tau_{n}^{1}\right] .{ }^{85}$ To highlight the consequence of ignoring the nonlinearity, I also estimate the policy effect using the following approximation:

$$
\begin{equation*}
\left.\widehat{\Delta Y}\left(\tau_{n}^{0}, \tau_{n}^{1}\right) \approx \sum_{i=1}^{N} \frac{d \widehat{Y_{i}(s)}}{d s}\right|_{s=\tau_{n}^{0}} \times\left(\tau_{n}^{1}-\tau_{n}^{0}\right) . \tag{30b}
\end{equation*}
$$

That is, the estimate is computed by assuming that the responsiveness of GDP is constant throughout the course of the policy change at the level of the current policy regime.

Table 2 compares the estimates for the policy effect based on (30a) and (30b) in both cases of monopolistic and oligopolistic competition. Two things stand out about this table. First, the estimate (30a) under oligopolistic competition is almost twice as large in magnitude as that under monopolistic competition. This reflects the impact of the policy reform coming through the strategic interactions as studied in Section 2. The substantial discrepancy between these two estimates highlights the policy relevance of strategic interactions. Second, regardless of the type of market competition, the estimates based on (30b) are quantitatively significantly different from those based on (30a)..86 This underlines the substantial degree of nonlinearity in the responsiveness of GDP as a function of the subsidy, which is visualized in Figure 1. ${ }^{87}$ The nonlinearity essentially arises from the fact that the firms' reactions depend on their quantity and price, as well as their production elasticities, each of which in turn depends on the value of the underlying subsidy. See also Remark 5.1 (ii).

[^30]Lastly, it is clear in Figure 1 (b) that there is a steady upward trend from 15.60% to 16.00%. Thus, it might appear tempting to argue that further increasing the subsidy by, say, 2% will eventually revert the policy effect to being positive. However, my identification result builds on Assumption 5.2, which restricts an alternative policy to stay within the observed support of the policy variable. Establishing the identification for a policy that sends the policy variable to outside the observed support in general requires additional invariance conditions, as studied by Canen and Song (2022).

Table 2: The estimates of the object of interest

(billion U.S. dollars)	Monopolistic competition	Oligopolistic competition
Estimates based on (30a)	-0.71	-1.34
Estimates based on (30b)	1.76	-2.93

Note: This table compares the estimates for the object of interest (24) based on the benchmark and my method. The estimates are measured in billions of U.S. dollars.

Figure 1: The total derivative of Y with respect to τ_{n}

Note: This figure illustrates the estimates of the total derivative of (economy-wide) GDP with respect to the semiconductor subsidy between $\tau_{n}=14.94 \%$ and 16.00%. Panel (a) shows the result for the case of monopolistic competition and panel (b) for the case of oligopolistic competition. The red line represents the estimates based on the nonlinear approximation (30a). The blue line indicates the estimates based on the linear approximation (30b). The broken line stands for zero. Hence, the part surrounded by the broken line and those (solid and dotted) red lines above it measures the total increment of GDP over the course of the policy change, while the other part gives the total decrement in GDP. The difference between these two areas delivers the estimated value of the policy effect according to (30a). Similarly, the area surrounded by the broken line and blue line gives the estimated value of the policy effect according to (30b).

6.2 Mechanism

To study the mechanism behind the results obtained in Section 6.1, I investigate the determination of the integrand of (27) (the responsiveness of sectoral GDP).

6.2.1 Responsiveness of sectoral GDP

Design. I anchor my interpretation of the responsiveness of sectoral GDP around (28):

$$
\begin{equation*}
\left.\frac{d Y_{i}(s)}{d s}\right|_{s=\tau_{n}}=\underbrace{\sum_{k=1}^{N_{i}} \frac{d p_{i k}^{*}}{d \tau_{n}} q_{i k}^{*}}_{\text {price effect }}+\underbrace{\sum_{k=1}^{N_{i}} p_{i k}^{*} \frac{d q_{i k}^{*}}{d \tau_{n}}}_{\text {quantity effect }}-(\underbrace{\sum_{k=1}^{N_{i}} \sum_{j=1}^{N} \frac{d P_{j}^{*}}{d \tau_{n}} m_{i k, j}^{*}}_{\text {wealth effect }}+\underbrace{\sum_{k=1}^{N_{i}} \sum_{j=1}^{N} P_{j}^{*} \frac{d m_{i k, j}^{*}}{d \tau_{n}}}_{\text {switching effect }}), \tag{31}
\end{equation*}
$$

which states that the marginal effect of a policy change consists of changes in revenue and expenditure on material input net of subsidies. The former is broken down into price and quantity effects. When a firm produces more of its output, the price effect dictates the loss due to the increased supply in light of the law of demand. Under oligopolistic competition, this downward pressure depends not only on the increase in a firm's own quantity but also on a change in every other firm's output quantity through the cross-price elasticities of demand. The quantity effects are proportional to the given level of the firm's output price. The other component of (31) can similarly be decomposed into two parts: the wealth and switching effects. The wealth effects are changes in a firm's "budget" as a result of changes in sectoral price indices. The switching effects are changes in the sectoral composition of the firm's input purchase, holding the price level constant.

Result. Table 3 reports the rankings of the top and bottom five industries in terms of gains and losses on sectoral GDP for monopolistic and oligopolistic competition. From this table, it can be seen that the sectoral distributional consequence - which sector wins and which sectors lose - depends on the tension between the two types of price and quantity effects defined in (31). To build intuition about this, suppose that all firms in a sector increase their production of output (positive quantity effects). By the law of demand, this lowers the output prices (negative price effects). These two effects induce another set of price and quantity effects. On the one hand, to produce more of their goods, the firms increase the purchase of input goods (negative switching effects). ${ }^{88}$ On the other hand, since their products are now

[^31]sold at lower prices and used as input by other sectors according to the production network, they expect to see a reduction in the prices of other sectoral goods, which in turn lowers their input costs (positive wealth effect). The total effect depends on which of these price and quantity effects are dominant.

Take the computer and electronic products industry as an example. Under monopolistic competition, the positive components (the quantity and wealth effects) jointly dominate the negative parts (the price and switching effects). When the markets are oligopolistic, the positive quantity effects are almost exactly offset by the negative price effects, while the positive wealth effects are surpassed by the negative switching effects, leaving the firms with a higher input cost. Loosely speaking, the input costs do not fall as much as the semiconductor firms have expected. This echoes the insight gleaned in Section 2.3 that the network compounds the firms' strategic complementarities, amplifying or buffering the policy effects across industries.

Next, I explore the determination of this tension with a particular focus on the comovements between firm- and sector-level variables.

6.2.2 Macro and Micro Complementarities

Here, I derive three "reduced-form" equations of comparative statics that span the middle layer of my identification procedure. These three equations jointly envision the process by which the within-sector overall strategic complementarities (micro complementarities) are compounded through the production network into between-sector complementarities (macro complementarities). ${ }^{89}$ It is these two complementarities that dictate the comovement of sectoral price and material cost indices. The bottom line is that, relative to the monopolistic benchmark, both micro and macro complementarities in the case of oligopolistic competition can be amplified or weakened due to firms' strategic complementarities. A fuller account can be found in Appendix C.3.

Key equations. First, the total differentiation of the firm's profit-maximization problem yields

$$
\begin{equation*}
\frac{d q_{i k}^{*}}{d \tau_{n}}=\bar{\lambda}_{i k}^{M} \frac{d P_{i}^{M^{*}}}{d \tau_{n}}+\bar{\lambda}_{i k}^{L} \frac{d W^{*}}{d \tau_{n}}, \tag{32}
\end{equation*}
$$

where $\bar{\lambda}_{i k}^{M}$ and $\bar{\lambda}_{i k}^{L}$ are indices measuring the extent to which the market competition is affected by the change in firm k 's quantity.

[^32]Table 3: Responsiveness of Sectoral GDP (in Billions of U.S. Dollars)
(a) Monopolistic Competition (with the Production Network)

Industry	Total Effects	Effects on Revenue		Effects on Material Cost	
		p.effect	q.effect	w.effect	s.effect
Wholesale trade	2679.40	3129.08	-14997.04	2900.08	-17447.44
Computer and electronic products	196.76	-538.04	1098.37	-152.90	516.47
Hospitals and nursing	87.26	-13.15	77.68	31.92	-54.64
Food services and drinking places	79.37	-27.08	117.76	19.42	-8.11
	\vdots				
Broadcasting and telecommunications	-369.96	1079.64	-1948.26	597.88	-1096.54
Petroleum and coal products	-551.58	740.38	-462.15	2091.71	-1261.90
Motor vehicles, bodies and trailers, and parts	-720.69	626.73	-2963.23	687.48	-2303.29
Retail trade	-725.91	2993.65	-8432.83	2989.46	-7702.73
Total	150.74				

(b) Oligopolistic Competition (with the Production Network)

Industry	Total Effects	Effects on Revenue			Effects on Material Cost	
			p.effect	q.effect		w.effect
s.effect						
Accommodation	0.73	-2.15	3.38		-1.28	1.77
Wood products	0.59	0.83	-1.26		-0.47	-0.56
Plastics, rubber and mineral products	0.47	-6.35	6.26		-4.89	4.32
Railroad and truck transportation	0.44	-1.29	1.53		-1.35	1.15
		\vdots				
Wholesale trade	-14.28	-70.76	71.60	-78.28	93.40	
Miscellaneous manufacturing	-44.50	43.98	-125.57	0.66	-37.75	
Petroleum and coal products	-58.79	-186.41	187.48	-104.18	164.04	
Computer and electronic products	-94.70	-251.29	252.58	-59.75	155.74	
Total	-250.23					

Note: This table reports the estimates for the top and bottom four firms in terms of the total effects (i.e., the change in sectoral GDP in the order of a million dollars). Panel (a) shows the results for monopolistic competition, while panel (b) illustrates the estimates for oligopolistic competition. Since the network spillover effects are by construction absent in monopolistic competition, results for other industries are omitted in panel (a). In each of the panels, the total effects are broken down into the effects on revenue and material input costs. They are further decomposed into four effects according to (31): namely, p.effect stands for the price effects, q.effect the quantity effects, w.effect the wealth effects, and s.effect the switching effects. Notice that the total effects are given by the effects on revenue minus the effects on material costs (see (31)). The ellipsis points (vertical three dots) stands for other 30 industries omitted. Hence summing up the total effects of the displayed eight industries do not equal to the entire total effects.

Second, totally differentiating the firm's profit-maximization and cost-minimization problems delivers

$$
\begin{equation*}
\frac{d P_{i}^{*}}{d \tau_{n}}=\bar{\lambda}_{i}^{M} \cdot \frac{d P_{i}^{M^{*}}}{d \tau_{n}}+\bar{\lambda}_{i}^{L} \cdot \frac{d W^{*}}{d \tau_{n}}, \tag{33}
\end{equation*}
$$

where $\bar{\lambda}_{i}^{M}$. and $\bar{\lambda}_{i}^{L}$. are weighted sums of $\bar{\lambda}_{i k}^{M}$,s and $\bar{\lambda}_{i k}^{L}$'s in sector i, respectively. Since each of these coefficients involves the derivatives of marginal revenue functions not only with respect to firms own choices but also with respect to competitors' choices (i.e., strategic complementarities), it can be conceived as a measure of the sector's "overall" strategic complementarity. I call $\bar{\lambda}_{i}^{M}$. and $\bar{\lambda}_{i}^{L}$. sector i 's micro complementarities with respect to material and labor input, respectively. ${ }^{90}$

Third, from the cost-minimization problem for the material input aggregator, I have

$$
\begin{equation*}
\frac{d P_{i}^{M^{*}}}{d \tau_{n}}=-h_{i, n}^{M} \frac{P_{n}^{M^{*}}}{1-\tau_{n}}+h_{i}^{L} \frac{d W^{*}}{d \tau_{n}} \tag{34}
\end{equation*}
$$

where $h_{i, n}^{M}$ indicates the (i, n) entry of $(I-\Gamma)^{-1}$, with $\Gamma:=\left[\gamma_{i, j} \frac{P_{i}^{M^{*}}}{P_{j}^{*}} \bar{\lambda}_{j}^{M}\right]_{i, j=1}^{N}$. Note that the array of the output elasticities $\left[\gamma_{i, j}\right]_{i, j=1}^{N}$ reflects the input-output structure Ω (Fact B.5). Hence, the matrix $(I-\Gamma)^{-1}$ can be considered a version of the Leontief inverse matrix that compounds the sectors' micro complementarities along the network. In (34), $h_{i, n}^{M}$ captures the comovement pattern of the sectoral cost index $\frac{d P_{i}^{M^{*}}}{d \tau_{n}}$ and the direct effect of the subsidy $-\frac{P_{1}^{M^{*}}}{1-\tau_{n}}$. I call $h_{i, n}^{M}$ sector i 's macro complementarity to the policy shock on sector n. Similarly, h_{i}^{L} is referred to as sector i 's macro complementarity to the change in the wage rate.

Note that $\frac{d W^{*}}{d \tau_{n}}$ can be written in terms of firm-level production and inverse demand functions of all firms across sectors. Conditional on the bottom layer problem, these three equations, (32), (33), and (34) can be viewed as "reduced-form" equations. Reading these in reverse order, I can proceed as if the material cost indices were determined first, followed by the adjustments of the sectoral price indices and firm-level output quantities. Moreover, combining equations (33) and (34), the coefficient of pass-through from material cost to price index can be expressed in terms of the macro and micro complementarities. Notice, though, that the reduced-form coefficients in the above three equations are already composites of firm-level production and inverse demand functions and thus do not allow for behavioral interpretations; rather, they only represent comovement patterns of the comparative statics.

[^33]Result. Table 4 reports the responses of sectoral price indices and material cost indices, along with the coefficients indicating macro and micro complementarities for the top and bottom four industries listed in Table 3. In this empirical analysis, I obtain $-\frac{P_{n}^{M^{*}}}{1-\tau_{n}}=-827.92$. Also, $\frac{d W^{*}}{d \tau_{n}}=-86.34$ for the case of monopolistic competition, and $\frac{d W^{*}}{d \tau_{n}}=-0.77$ for the case of oligopolistic competition.

The material cost of the semiconductor industry decreases in both monopolistic and oligopolistic competition. But the magnitudes are different because the sector's macro complementarities (h_{i}^{L} and $h_{i, n}^{M}$) vary substantially across these two types of markets. This reflects the fact that macro complementarity compounds all sectors' micro complementarities, which involve the sector's strategic complementarities. This appears more starkly in the wholesale trade industry, whose material cost index in the oligopolistic case moves in the opposite direction of that in the monopolistic one.

Disciplined by (33), Table 4 also displays how much the sectoral price indices change. For the computer and electronic products industry, the magnitudes of the micro complementarities are more nuanced in oligopolistic competition relative to in monopolistic competition, the pass-throughs from material input cost and wage being less transient. This is in concordance with the price effects in Table 3. Moreover, since the most important source industry for this industry is itself, this price change is directly translated into the positive wealth effects shown in Table 3. ${ }^{91}$

Associated with changes in the sectoral price indices is the firm's adjustment of output and input quantities. Take the wholesale trade industry as an example. Figure 2 illustrates the changes in the firmlevel output quantities and prices in this industry for both monopolistic and oligopolistic competition. While most of the monopolistic firms respond by dramatically reducing their output quantities, the responses of the oligopolistic firms are much more nuanced, with many firms increasing their production (Figure $2(\mathrm{a})$). ${ }^{92}$ This is accompanied by firm-level prices moving in the opposite direction (Figure 2 (b)). Note that these are consistent with the price and quantity effects of this industry shown in Table 3. It should also be noted that the correlation coefficient between firm-level markups and the changes in firms' output quantities is 0.61 for the monopolistic market and -0.75 for the oligopolistic case, which implies that the quantity adjustments tend to be led by the leading firms in both cases. In line with the quantity adjustment, many of the monopolistic firms reduce their input purchases from many sectors, while most of the oligopolistic firms increase their purchases of a wide range of intermediate goods (Figure 3). ${ }^{93}$ This

[^34]Table 4: The Changes in Sectoral Price Indices and Material Cost Indices
(a) Monopolistic Competition (with the Production Network)

Industry (i)	h_{i}^{L}	$h_{i, n}^{M}$	$\frac{d P_{i}^{M^{*}}}{d \tau_{n}}$	$\bar{\lambda}_{i \cdot}^{L}$	$\bar{\lambda}_{i \cdot}^{M}$	$\frac{d P_{i}^{*}}{d \tau_{n}}$
Wholesale trade	-65.37	-1.11	6567.20	1.71	0.63	4013.97
Computer and electronic products	-13.19	4.12	-2268.93	1.51	0.24	-667.05
Hospitals and nursing	-29.05	-0.97	3312.98	15.19	0.31	-285.32
Food services and drinking places		-22.46	-0.63	2460.67	7.34	0.11
	\vdots	-560.25				
Broadcasting and telecommunications	-52.00	0.42	4140.84	1.12	0.16	567.66
Petroleum and coal products	-5.51	0.00	471.62	-0.07	0.05	28.53
Motor vehicles, bodies and trailers, and parts	-12.35	-0.60	1560.55	3.67	0.60	618.57
Retail trade	-69.60	-1.46	7218.48	2.63	0.22	1372.51

(b) Oligopolistic Competition (with the Production Network)

Industry (i)	h_{i}^{L}	$h_{i, n}^{M}$	$\frac{d P_{i}^{M^{*}}}{d \tau_{n}}$	$\bar{\lambda}_{i .}^{L}$	$\bar{\lambda}_{i .}^{M}$	$\frac{d P_{i}^{*}}{d \tau_{n}}$
Accommodation	13.13	0.12	-110.80	-1.70	0.11	-10.58
Wood products	3.95	0.06	-50.19	-1.55	-0.21	11.59
Plastics, rubber and mineral products	12.50	0.16	-140.44	1.05	0.06	-9.21
Railroad and truck transportation	14.48	0.12	-112.13	0.82	0.07	-8.94
	\vdots					
Wholesale trade	15.44	0.20	-177.26	0.30	0.11	-19.16
Miscellaneous manufacturing	-30.04	-0.05	60.67	119.47	4.86	203.32
Petroleum and coal products	2.44	0.03	-23.49	0.05	0.49	-11.57
Computer and electronic products	13.34	1.67	-1391.01	0.68	0.11	-153.40

Note: This table displays the estimates for the elements of (33) and (34) for those industries listed in Table 3. Panel (a) shows the results for monopolistic competition and panel (b) for oligopolistic competition.
corresponds to the switching effects in Table 3.
All in all, I find that the sectors' macro and micro complementarities under oligopolistic competition differ substantially from those under monopolistic competition. In 23 out of 38 industries, these differences jointly manifest themselves through the difference in the sign of the marginal change in the sectoral price index, which is associated with that of firms' equilibrium responses. This result again points to the empirical relevance of accounting for firms' strategic interactions in credibly predicting firms' responses and hence the policy effect.

Figure 2: The Changes in Firm's Output Quantities and Prices (Wholesale trade)

Note: This figure shows horizontal bar plots representing the changes in firms' output quantities in wholesale trade and compares the case of monopoly (blue) to that of oligopoly (orange). To facilitate the discussion, indices for five firms are explicitly marked (e.g., $k \in\{3,21,34,56,68\}$). Note that firms' output quantities are identified (and thus estimated) only up to scale.

7 Conclusions

Industrial policies have been and will continue to be an important policy tool for policymakers to achieve a range of policy goals. This paper studies the effect of an industrial policy on an aggregate outcome in the presence of strategic interactions and production networks. To this end, I develop a general equilibrium multisector model of heterogeneous oligopolistic firms with a production network. For the identification, I develop a new, multi-layered identification procedure that first deconstructs the policy parameter into sectoral aggregate variables as well as firm-level variables - firm-level sufficient statistics - and recovers the latter by using the control function approach of the industrial organization literature before finally

[^35]Figure 3: The Changes in Demand for Sectoral Intermediate Goods (Wholesale trade)

Note: This figure shows heatmaps indicating changes in demand for sectoral intermediate goods from firms in wholesale trade. Panel (a) shows the results for monopolistic competition, while the estimates for oligopolistic competition are depicted in panel (b). In both panels, the horizontal axis denotes industry, and the vertical axis represents individual firms. To facilitate the discussion, a firm's index is explicitly marked for five firms (e.g., $k \in\{3,21,34,56,68\}$). White cells represent decreases in demand for sectoral goods. Gray and black cells stand for mild $\left(0 \sim 1.0 \times 10^{7}\right)$ and large $\left(1.0 \times 10^{7} \sim\right)$ increases in demand for sectoral goods, respectively. These are measured in the same unit as the final consumption good.
reconstructing the original policy parameter. To accommodate the firm's strategic interactions, I restrict the classes of the firm's inverse demand and production function and the path through which the other firm's productivities enter the firm's production decision. I show that these assumptions are general enough to encompass many specifications that are commonly used in the macroeconomics literature. Given that all firm-level responses - the finest ingredient of the model - are identified, my method can be used to study a variety of policy parameters such as GDP, consumption, intersectoral trade flow, and sectoral distributional outcomes. Moreover, since my approach is constructive, a nonparametric estimator for the policy effect can thus be obtained by reading this procedure in reverse without adapting any external information (e.g., parameter estimates from the preceding research).

My estimates, based on U.S. firm-level data, suggest that accounting for the firm's strategic interactions doubles the magnitude of the policy effect of an additional subsidy on the semiconductor industry relative to the case where firms are monopolistic. This is because when strategic interactions are present, the production network compounds not only firm-level markup responses with respect to the firm's own choices but also with respect to competitors' choices, whereas the latter is absent in monopolistic competition. This additional wedge in network spillovers manifests itself as the differences in the comovements
of sectoral price indices and material cost indices, or pass-through coefficients.
Interpreting the results displayed in this paper requires some care because they are susceptible to errors to the extent that the Compustat data are incomplete and non-representative and incur substantial imputation. ${ }^{94}$ Besides the data limitation, there are three directions for future work. First, this paper abstracts away from the firm's entry and exit problem over the course of policy reform, restricting the scope of analysis to short-run policy effects. Accommodating a long-run perspective inserts an additional layer into my framework, namely, the free-entry condition. Deriving the comparative statics, however, is nontrivial in my setup as the number of firms is finite, and thus the standard notion of derivatives cannot be well-defined. Second, the identification analysis of this paper assumes that the economy features a single equilibrium, the same equilibrium is played over the course of a policy reform, and the policy reform is restricted to be within the historically observed support. These limitations can be simultaneously addressed at the cost of additional assumptions concerning the equilibrium selection probability, as studied in Canen and Song (2022). Third, my model is static and thus silent about the policy implications of capital accumulation, which is usually at the center of policy debate. An extension to a dynamic environment requires an explicit consideration of not only the firm's own future choices but also competitors' future choices. This convoluted forward-looking nature opens up another source of multiplicity of equilibria.

[^36]
References

Acemoglu, D., V. M. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi (2012). The network origins of aggregate fluctuations. Econometrica 80(5), 1977-2016.
Ackerberg, D. A., K. Caves, and G. Frazer (2015). Identification properties of recent production function estimators. Econometrica 83(6), 2411-2451.
Adão, R., C. Arkolakis, and S. Ganapati (2020). Aggregate implications of firm heterogeneity: A nonparametric analysis of monopolistic competition trade models.
Adão, R., A. Costinot, and D. Donaldson (2017). Nonparametric counterfactual predictions in neoclassical models of international trade. American Economic Review 107(3), 633-689.
Aguirregabiria, V. and P. Mira (2010). Dynamic discrete choice structural models: A survey. Journal of Econometrics 156(1), 38-67.
Alvarez, F., F. Lippi, and P. Souganidis (2023). Price setting with strategic complementarities as a mean field game. Working Paper.
Amiti, M., O. Itskhoki, and J. Konings (2014). Importers, exporters, and exchange rate disconnect. American Economic Review 104(7), 1942-78.
Antràs, P. and D. Chor (2019). On the measurement of upstreamness and downstreamness in global value chains. In L. Y. Ing and M. Yu (Eds.), World Trade Evolution: Growth, Productivity and Employment, Book section 5, pp. 126-194. Taylor \& Francis Group.
Antràs, P., D. Chor, T. Fally, and R. Hillberry (2012). Measuring the upstreamness of production and trade flows. American Economic Review 102(3), 412-16.
Arkolakis, C., A. Costinot, D. Donaldson, and A. Rodríguez-Clare (2019). The elusive pro-competitive effects of trade. The Review of Economic Studies 86(1), 46-80.
Arkolakis, C., A. Costinot, and A. Rodríguez-Clare (2012). New trade models, same old gains? American Economic Review 102(1), 94-130.
Atalay, E. (2017). How important are sectoral shocks? American Economic Journal: Macroeconomics 9(4), 254-80.
Atkeson, A. and A. Burstein (2008). Pricing-to-market, trade costs, and international relative prices. American Economic Review 98(5), 1998-2031.
Baqaee, D. R. and E. Farhi (2019). Macroeconomics with heterogeneous agents and input-output networks. Working Paper.
Baqaee, D. R. and E. Farhi (2020). Productivity and misallocation in general equilibrium. The Quarterly Journal of Economics 135(1), 105-163.
Baqaee, D. R. and E. Farhi (2022). Networks, barriers, and trade. Working Paper.
Bartelme, D., A. Costinot, D. Donaldson, and A. Rodríguez-Clare (2021). The textbook case for industrial policy: Theory meets data. Working Paper.
Bartelsman, E. J. and M. Doms (2000). Understanding productivity: Lessons from longitudinal microdata. Journal of Economic Literature 38(3), 569-594.
Basu, S. (1995). Intermediate goods and business cycles: Implications for productivity and welfare. The American Economic Review 85(3), 512-531.
Basu, S. and J. G. Fernald (1997). Returns to scale in U.S. production: Estimates and implications. Journal of Political Economy 105(2), 249-283.
Bigio, S. and J. La'O (2020). Distortions in production networks. The Quarterly Journal of Economics 135(4), 2187-2253.
Bloom, N., R. Sadun, and J. Van Reenen (2012). Americans do IT better: US multinationals and the productivity miracle. American Economic Review 102(1), 167-201.
Bond, S., A. Hashemi, G. Kaplan, and P. Zoch (2021). Some unpleasant markup arithmetic: Production function elasticities and their estimation from production data. Journal of Monetary Economics 121, 1-14.

Brand, J. (2020). Estimating productivity and markups under imperfect competition. Working Paper. Burstein, A. and G. Gopinath (2014). International Prices and Exchange Rates, Volume 4, Book section 7, pp. 391-451. Elsevier.
Caliendo, L. and F. Parro (2015). Estimates of the trade and welfare effects of NAFTA. The Review of Economic Studies 82(1 (290)), 1-44.
Caliendo, L., F. Parro, and A. Tsyvinski (2022). Distortions and the structure of the world economy. American Economic Journal: Macroeconomics 14 (4), 274-308.
Canen, N. and K. Song (2022). A decomposition approach to counterfactual analysis in game-theoretic models. Working Paper.
Canen, N. and K. Sugiura (2023). Inference in linear dyadic data models with network spillovers. Political Analysis. Forthcoming.
Carvalho, V. M. and A. Tahbaz-Salehi (2019). Networks: A primer. Annual Review of Economics 11, 635-663.
Chetty, R. (2009). Sufficient statistics for welfare analysis: A bridge between structural and reduced-form methods. Annual Review of Economics 1, 451-487.
Congressional Budget Office (2022). Estimated budgetary effects of h.r. 4346.
Costinot, A. and A. Rodríguez-Clare (2014). Trade Theory with Numbers: Quantifying the Consequences of Globalization, Volume 4. North Holland: Elsevier.
Covarrubias, M., G. Gutiérrez, and T. Philippon (2020). From good to bad concentration? US industries over the past 30 years. NBER Macroeconomics Annual 34, 1-46.
Criscuolo, C., R. Martin, H. G. Overman, and J. Van Reenen (2019). Some causal effects of an industrial policy. American Economic Review 109(1), 48-85.
De Loecker, J., J. Eeckhout, and S. Mongey (2021). Quantifying market power and business dynamism in the macroeconomy. Working Paper.
De Loecker, J., J. Eeckhout, and G. Unger (2020). The rise of market power and the macroeconomic implications. The Quarterly Journal of Economics 135(2), 561-644.
Debreu, G. (1952). A social equilibrium existence theorem. Proceedings of the National Academy of Sciences of the United States of America 38(10), 886-893.
Dekle, R., J. Eaton, and S. Kortum (2007). Unbalanced trade. American Economic Review 97(2), 351-355.
Dekle, R., J. Eaton, and S. Kortum (2008). Global rebalancing with gravity: Measuring the burden of adjustment. IMF Staff Papers 55(3), 511-540.
Dingel, J. I. and F. Tintelnot (2023). Spatial economics for granular settings. Working Paper.
Doraszelski, U. and J. Jaumandreu (2019). Using cost minimization to estimate markups. Working Paper.
Edmond, C., V. Midrigan, and D. Y. Xu (2015). Competition, markups, and the gains from international trade. American Economic Review 105(10), 3183-3221.
Eurostat (2008). Eurostat manual of supply, use and input-output tables. Eurostat Methodologies and Working Papers.
Fajgelbaum, P. D., P. K. Goldberg, P. J. Kennedy, and A. K. Khandelwal (2020). The return to protectionism. The Quarterly Journal of Economics 135(1), 1-55.
Fan, K. (1952). Fixed-point and minimax theorems in locally convex topological linear spaces. Proceedings of the National Academy of Sciences of the United States of America 38(2), 121-126.
Feenstra, R. C. (2018). Restoring the product variety and pro-competitive gains from trade with heterogeneous firms and bounded productivity. Journal of International Economics 110, 16-27.
Feenstra, R. C. and D. E. Weinstein (2017). Globalization, markups, and us welfare. Journal of Political Economy 125(4), 1040-1074.
Flynn, Z., A. Gandhi, and J. Traina (2019). Measuring markups with production data. Working Paper.
Foster, L., J. Haltiwanger, and C. Syverson (2008). Reallocation, firm turnover, and efficiency: Selection
on productivity or profitability? American Economic Review 98(1), 394-425.
Gandhi, A., S. Navarro, and D. A. Rivers (2019). On the identification of gross output production functions. Journal of Political Economy 128(8), 2973-3016.
Gaubert, C. and O. Itskhoki (2020). Granular comparative advantage. Journal of Political Economy 129(3), 871-939.
Glicksberg, I. L. (1952). A further generalization of the kakutani fixed point theorem, with application to nash equilibrium points. Proceedings of the American Mathematical Society 3(1), 170-174.
Grassi, B. (2017). IO in I-O: Size, industrial organization, and the input-output network make a firm structurally important. Working Paper.
Grassi, B. and J. Sauvagnat (2019). Production networks and economic policy. Oxford Review of Economic Policy 35(4), 638-677.
Grossman, G. M. and E. Helpman (1994). Protection for sale. The American Economic Review 84(4), 833-850.
Gutiérrez, G. and T. Philippon (2017). Investmentless growth: An empirical investigation. Brookings Papers on Economic Activity, 89-190.
Hansen, L. P. and J. J. Heckman (1996). The empirical foundations of calibration. Journal of Economic Perspectives 10(1), 87-104.
Heckman, J. J., L. Lochner, and C. Taber (1998a). Explaining rising wage inequality: Explorations with a dynamic general equilibrium model of labor earnings with heterogeneous agents. Review of Economic Dynamics 1(1), 1-58.
Heckman, J. J., L. Lochner, and C. Taber (1998b). General-equilibrium treatment effects: A study of tuition policy. The American Economic Review 88(2), 381-386.
Heckman, J. J., L. Lochner, and C. Taber (1998c). Tax policy and human-capital formation. The American Economic Review 88(2), 293-297.
Heckman, J. J. and E. Vytlacil (2001). Policy-relevant treatment effects. The American Economic Review 91 (2), 107-111.
Heckman, J. J. and E. Vytlacil (2005). Structural equations, treatment effects, and econometric policy evaluation. Econometrica 73(3), 669-738.
Heckman, J. J. and E. J. Vytlacil (2007). Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric Policy Evaluation, Volume 6B, Book section 70, pp. 47794874. Elsevier.

Helpman, E., M. Melitz, and Y. Rubinstein (2008). Estimating trade flows: Trading partners and trading volumes. The Quarterly Journal of Economics 123(2), 441-487.
Horvath, M. (1998). Cyclicality and sectoral linkages: Aggregate fluctuations from independent sectoral shocks. Review of Economic Dynamics 1(4), 781-808.
Horvath, M. (2000). Sectoral shocks and aggregate fluctuations. Journal of Monetary Economics $45(1)$, 69-106.
Huang, K. X. D. (2006). Specific factors meet intermediate inputs: Implications for the persistence problem. Review of Economic Dynamics 9(3), 483-507.
Huang, K. X. D. and Z. Liu (2004). Input-output structure and nominal rigidity: The persistence problem revisited. Macroeconomic Dynamics 8(2), 188-206. Copyright - Copyright Cambridge University Press, Publishing Division Apr 2004.
Huang, K. X. D., Z. Liu, and L. Phaneuf (2004). Why does the cyclical behavior of real wages change over time? American Economic Review 94(4), 836-856.
Itskhoki, O. and B. Moll (2019). Optimal development policies with financial frictions. Econometrica 87(1), 139-173.
Jones, C. I. (2011). Intermediate goods and weak links in the theory of economic development. American Economic Journal: Macroeconomics 3(2), 1-28.
Jones, C. I. (2013). Misallocation, Economic Growth, and Input-Output Economics, Volume 2 of Econo-
metric Society Monographs, pp. 419-456. Cambridge: Cambridge University Press.
Juhász, R. (2018). Temporary protection and technology adoption: Evidence from the napoleonic blockade. American Economic Review 108(11), 3339-76.
Juhász, R., N. J. Lane, and D. Rodrik (2023). The new economics of industrial policy. Working Paper.
Juhász, R. and C. Steinwender (2023). Industrial policy and the great divergence. Working Paper.
Kasahara, H. and Y. Sugita (2020). Nonparametric identification of production function, total factor productivity, and markup from revenue data. Working Paper.
Kasahara, H. and Y. Sugita (2023). Nonparametric identification of production function, total factor productivity, and markup from revenue data. Working Paper.
Kimball, M. S. (1995). The quantitative analytics of the basic neomonetarist model. Journal of Money, Credit and Banking 27(4), 1241-1277.
Kirov, I., P. Mengano, and J. Traina (2022). Measuring markups with revenue data. Working Paper.
Klenow, P. J. and J. L. Willis (2016). Real rigidities and nominal price changes. Economica 83(331), 443-472.
Klette, T. J. and Z. Griliches (1996). The inconsistency of common scale estimators when output prices are unobserved and endogenous. Journal of Applied Econometrics 11(4), 343-361.
Kleven, H. J. (2021). Sufficient statistics revisited. Annual Review of Economics 13(1), 515-538.
Lane, N. (2020). The new empirics of industrial policy. Journal of Industry, Competition and Trade 20(2), 209-234.
Lane, N. (2021). Manufacturing revolutions: Industrial policy and industrialization in south korea. Working Paper.
La'O, J. and A. Tahbaz-Salehi (2022). Optimal monetary policy in production networks. Econometrica $90(3), 1295-1336$.
Lashkaripour, A. and V. Lugovskyy (2023). Profits, scale economies, and the gains from trade and industrial policy. Working Paper.
Levinsohn, J. and A. Petrin (2003). Estimating production functions using inputs to control for unobservables. The Review of Economic Studies 70(2), 317-341.
Liu, E. (2019). Industrial policies in production networks. The Quarterly Journal of Economics 134 (4), 1883-1948.
Long, J. B. and C. I. Plosser (1983). Real business cycles. Journal of Political Economy 91(1), 39-69.
Marshall, A. (1890). The Principles of Economics. New York.
Matsuyama, K. (2023). Non-ces aggregators: A guided tour. Annual Review of Economics 15(1), 235265.

Matsuyama, K. and P. Ushchev (2017). Beyond ces: Three alternative classes of flexible homothetic demand systems. Working Paper.
Matzkin, R. L. (2008). Identification in nonparametric simultaneous equations models. Econometrica 76(5), 945-978.
Matzkin, R. L. (2013). Nonparametric identification in structural economic models. Annual Review of Economics 5, 457-486.
Mayer, T., M. J. Melitz, and G. I. P. Ottaviano (2021). Product mix and firm productivity responses to trade competition. The Review of Economics and Statistics 103(5), 874-891.
Melitz, M. J. and G. I. P. Ottaviano (2008). Market size, trade, and productivity. The Review of Economic Studies 75(1), 295-316.
Melitz, M. J. and S. J. Redding (2015). New trade models, new welfare implications. American Economic Review 105(3), 1105-46.
Mrázová, M. and J. P. Neary (2017). Not so demanding: Demand structure and firm behavior. American Economic Review 107(12), 3835-74.
Mrázová, M. and J. P. Neary (2019). Selection effects with heterogeneous firms. Journal of the European Economic Association 17(4), 1294-1334.

Nakamura, E. and J. Steinsson (2010). Monetary non-neutrality in a multisector menu cost model. The Quarterly Journal of Economics 125(3), 961-1013.
Olley, G. S. and A. Pakes (1996). The dynamics of productivity in the telecommunications equipment industry. Econometrica 64(6), 1263-1297.
Pan, Q. (2022). Identification of gross output production functions with a nonseparable productivity shock. Working Paper.
Rodrik, D. (2008). Industrial policy for the twenty-first century. In One Economics, Many Recipes: Globalization, Institutions, and Economic Growth, pp. 99-152. Princeton University Press.
Rotemberg, M. (2019). Equilibrium effects of firm subsidies. American Economic Review 109(10), 34753513.

Rubbo, E. (2023). Networks, phillips curves, and monetary policy. Econometrica 91 (4), 1417-1455.
Sraer, D. A. and D. Thesmar (2019). A sufficient statistics approach for aggregating firm-level experiments. Working Paper.
Syverson, C. (2004). Market structure and productivity: A concrete example. Journal of Political Economy 112(6), 1181-1222.
Syverson, C. (2011). What determines productivity? Journal of Economic Literature 49(2), 326-65.
Timmer, M. P., E. Dietzenbacher, B. Los, R. Stehrer, and G. J. de Vries (2015). An illustrated user guide to the world input-output database: the case of global automotive production. Review of International Economics 23(3), 575-605.
UN (2008). System of national accounts 2008.
Wang, O. and I. Werning (2022). Dynamic oligopoly and price stickiness. American Economic Review 112(8), 2815-49.
White House (2022, AUGUST 25). Executive order on the implementation of the chips act of 2022.
White House (2023, AUGUST 09). Fact sheet: One year after the chips and science act, biden-harris administration marks historic progress in bringing semiconductor supply chains home, supporting innovation, and protecting national security. https://www.whitehouse.gov/briefing-room/statements-releases/2023/08/09/ fact-sheet-one-year-after-the-chips-and-science-act-biden-harris-administration-marks-historic

A Overview

A. 1 Setup

Consider an economy consisting of two industries, indexed by $i=1,2$. Each industry's sales (measured in appropriate monetary unit) is denoted by x_{i} for $i \in\{1,2\}$. When there are no market distortions, each industry's sales is equivalent to the industry's expenditure, and it derives from final consumption (F) by consumers and intermediate use by all firms. The expenditure for final consumption is indicated by y_{i}.

The share of sector j 's good in sector i 's expenditure represented by $\omega_{i, j}$ for $i, j \in\{1,2\}$. I use an array $\Omega:=\left[\omega_{i, j}\right]_{i, j \in\{1,2,3\}}$ to keep track of the input-output structure. For instance, the industry 1 's sales consists of $\omega_{1,1}$ of the industry 1 's expenditure (x_{1}), $\omega_{2,1}$ of the industry 2's expenditure (x_{2}), and the final consumption $\left(y_{1}\right): x_{1}=\omega_{1,1} x_{1}+\omega_{2,1} x_{2}+y_{1}$ (see Table ?? (a)). Stacking this expression for all sectors into a matrix form, the sectoral expenditure, sales and final consumption satisfy the following relationship: $X=\Omega X+Y$, where X and Y are vectors stacking x_{i} 's and y_{i} 's, respectively, i.e., $X:=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{\prime}$ and $Y:=\left[\begin{array}{ll}y_{1} & y_{2}\end{array}\right]^{\prime}$.

Next, I impose a regularity condition.
Assumption A.1. $(I-\Omega)^{-1}$ exists.
This assumption is always satisfied (Carvalho and Tahbaz-Salehi 2019). Under Assumption A.1, I obtain

$$
\begin{equation*}
X=\underbrace{Y}_{\text {final demand }}+\underbrace{\Omega(I-\Omega)^{-1} Y}_{\text {intermediate demand }} \cdot{ }^{95} \tag{35}
\end{equation*}
$$

This expression decomposes the industries' sales into the demand of goods for final consumption and for intermediate use, with the latter proportional to the final consumption. Note that Assumption A. 1 implies:

$$
\begin{equation*}
(I-\Omega)^{-1}=\sum_{n=0}^{\infty} \Omega^{n} . \tag{36}
\end{equation*}
$$

It can be shown that the (i, j) entry of the right-hand side is

$$
\omega_{i, j}+\sum_{k \in\{1,2,3\}} \omega_{i, k} \omega_{k, j}+\sum_{k \in\{1,2,3\}} \sum_{l \in\{1,2,3\}} \omega_{i, k} \omega_{k, l} \omega_{k, j}+\ldots
$$

This dictates how important industry j is for industry i as a direct and indirect input supplier (Carvalho and Tahbaz-Salehi 2019).

Now, I introduce market distortions in this accounting framework. I assume that for each industry $i \in\{1,2\}$, the industry's sales $\left(x_{i}\right)$ is different from the expenditure $\left(\tilde{x}_{i}\right)$ by the rate of μ_{i} : i.e., $x_{i}=\mu_{i} \tilde{x}_{i}$. I consider the case of $\mu_{i}>0$, in which μ_{i} is interpreted as a sector-level markup. Let M be a 2×2 diagonal matrix with typical diagonal element being the sectoral markup and zero otherwise. Since it is assumed that the markup is the sole source of sector's value-added, I can write the sector i 's value added

[^37]$V A_{i}$ as $V A_{i}=\left(1-\frac{1}{\mu_{i}}\right) x_{i}$, i.e., the value added equals the sector's profits. In a matrix form, it can can be expressed as
\[

$$
\begin{equation*}
V A=\left(I-M^{-1}\right) X \tag{37}
\end{equation*}
$$

\]

To derive a version of (35), I need to strengthen Assumption A.1.
Assumption A.2. $\left(I-\Omega M^{-1}\right)^{-1}$ exists.
Under Assumption A.2, it holds that

$$
\begin{equation*}
X=\underbrace{Y}_{\text {final demand }}+\underbrace{\Omega M^{-1}\left(I-\Omega M^{-1}\right)^{-1} Y}_{\text {intermediate demand }}, \tag{38}
\end{equation*}
$$

where ΩM^{-1} is interpreted as a markup-augmented input-output linkage (Table ?? (b)).

A. 2 Macro Complementarities

In deriving (3), I utilize the following fact.
Fact A.1. (i) For a square matrix B and for any integer $n \geq 1, d B^{n}=\sum_{l=0}^{n-1} B^{l}(d B) B^{n-l-1}$. (ii) For a square matrix $B, d B^{-1}=-B^{-1}(d B) B^{-1}$.

Proposition A.1.

$$
\frac{d(V A)}{d \tau_{1}}=-\frac{d M^{-1}}{d \tau_{1}} X+\left(I-M^{-1}\right) \frac{d X}{d \tau_{1}},
$$

where

$$
\begin{aligned}
& \frac{d M^{-1}}{d \tau_{1}}=-M^{-1} \frac{d M}{d \tau_{1}} M^{-1} \\
& \frac{d X}{d \tau_{1}}=-\sum_{n=1}^{\infty} \sum_{l=0}^{n-1}\left(\Omega M^{-1}\right)^{l+1} \frac{d M}{d \tau_{1}} M^{-1}\left(\Omega M^{-1}\right)^{n-l-1} Y+\left(I-\Omega M^{-1}\right) \frac{d Y}{d \tau_{1}} .
\end{aligned}
$$

Proof. Applying Chain rule to (37),

$$
\frac{d(V A)}{d \tau_{1}}=-\frac{d M^{-1}}{d \tau_{1}} X+\left(I-M^{-1}\right) \frac{d X}{d \tau_{1}} .
$$

In view of Fact A. 1 (ii), it follows

$$
\frac{d M^{-1}}{d \tau_{1}}=-M^{-1} \frac{d M}{d \tau_{1}} M^{-1}
$$

Next, observe that (38) can be written as $X=\sum_{n=0}^{\infty}\left(\Omega M^{-1}\right)^{n} Y$, so that

$$
\frac{d X}{d \tau_{1}}=\left\{\frac{d}{d \tau_{1}} \sum_{n=0}^{\infty}\left(\Omega M^{-1}\right)^{n}\right\} Y+\left\{\sum_{n=0}^{\infty}\left(\Omega M^{-1}\right)^{n}\right\} \frac{d Y}{d \tau_{1}}
$$

For the first term, I invoke Fact A. 1 (i) to obtain

$$
\left\{\frac{d}{d \tau_{1}} \sum_{n=0}^{\infty}\left(\Omega M^{-1}\right)^{n}\right\} Y=-\sum_{n=1}^{\infty} \sum_{l=0}^{n-1}\left(\Omega M^{-1}\right)^{l+1} \frac{d M}{d \tau_{1}} M^{-1}\left(\Omega M^{-1}\right)^{n-1 l-1} Y
$$

The second term can be written as

$$
\left\{\sum_{n=0}^{\infty}\left(\Omega M^{-1}\right)^{n}\right\} \frac{d Y}{d \tau_{1}}=\left(I-\Omega M^{-1}\right) \frac{d Y}{d \tau_{1}} .
$$

This completes the proof.

A. 3 Micro Complementarities

In order to obtain a clear view about the endogenous responses of markup elasticities, I now microfound the determination of industry-level markups using an oligopoly model of Melitz and Ottaviano (2008). Consider the same setup as in Section 2.3. That is, each industry i is populated by two firms $k \in\{1,2\}$ (i.e., a duopoly), each producing a single differentiated product under a constant marginal cost $m c_{i k}$. The firms engage in a Cournot competition with complete information. Firms' products are aggregated into a single homogenous sectoral good Q_{i} according to a quadratic production function:

$$
Q_{i}=q_{i 0}+a\left(q_{i 1}+q_{i 2}\right)-\frac{b}{2}\left(q_{i 1}^{2}+q_{i 2}^{2}\right)-\frac{c}{2}\left(q_{i 1}+q_{i 2}\right)^{2},
$$

where $q_{i 0}$ is an outside good, $q_{i k}$ is meant to be the demand of firm k 's product for $k \in\{1,2\}$, and a, b and c are demand parameters. These demand parameters are all assumed to be positive. Assuming positive demand for each product, the inverse demand function faced by firm $k \in\{1,2\}$ is given by $p_{i k}=a-b q_{i k}-c\left(q_{i 1}+q_{i 2}\right)$.

Proposition A.2. The Nash-Cournot quantities are

$$
\begin{aligned}
& q_{i 1}^{*}=\frac{a(2 b+c)-(2 b+3 c) m c_{i 1}+c\left(m c_{i 1}+m c_{i 2}\right)}{(2 b+c)(2 b+3 c)} \\
& q_{i 2}^{*}=\frac{a(2 b+c)-(2 b+3 c) m c_{i 2}+c\left(m c_{i 1}+m c_{i 2}\right)}{(2 b+c)(2 b+3 c)} .
\end{aligned}
$$

Proof. Under the setup described above, the best response of firm k satisfies

$$
a-2(b+c) q_{i k}-c q_{i k^{\prime}}=m c_{i k} .
$$

By symmetry, the best response of firm $k^{\prime} \neq k$ is given by

$$
a-c q_{i k}-2(b+c) q_{i k^{\prime}}=m c_{i k^{\prime}} .
$$

From these, it follows

$$
-(2 b+c)(2 b+3 c) q_{i k}+a(2 b+c)=(2 b+3 c) m c_{i k}-c\left(m c_{i k}+m c_{i k^{\prime}}\right) .
$$

Since the demand parameters are assumed to be positive, it obtains

$$
q_{i k}=\frac{a(2 b+c)-(2 b+3 c) m c_{i k}+c\left(m c_{i k}+m c_{i k^{\prime}}\right)}{(2 b+c)(2 b+3 c)} .
$$

Again by symmetry, an analogous expression holds for firm k^{\prime}, completing the proof.

A. 4 Idea of Identification Strategy

Consider the same setup as Section 2.4. That is, the firm-level production in sector i is given by $q_{i k}=z_{i k} f_{i}\left(m_{i k, 1}, m_{i k, 2}\right)$, where $f_{i}(\cdot)$ is constant returns to scale with $z_{i k}$ and $m_{i k, j}$ representing firm k 's productivity and input demand for sector j 's good, respectively. The firm k 's marginal cost takes the form of $m c_{i k}=m c_{i} z_{i k}^{-1}$ where $m c_{i}$ is the marginal cost common to the both firms.

I assume that the observations ($m_{i k, 1}, m_{i k, 2}$) in the data are generated from an equilibrium. This requires the following regularity condition.

Assumption A.3. The demand parameters a, b and c, and firms' marginal costs $m c_{i 1}$ and $m c_{i 2}$ are such that the firm's input decisions are well defined.

Under this assumption, we can derive the expressions referred to in Section 2.4.
Proposition A.3. (i) There exists sector-specific constants K_{i} and \bar{H}_{i} such that

$$
q_{i k}^{*}=K_{i} z_{i k}^{-1}+\bar{H}_{i} .
$$

(ii) Under Assumption A.3, there exits a function \mathcal{M}_{i} such that

$$
z_{i k}=\mathcal{M}_{i}\left(m_{i k, 1}, m_{i k, 2} ; \bar{H}_{i}\right)
$$

Proof. (i) From Proposition A.2,

$$
q_{i k}=-\frac{2 b+3 c}{(2 b+c)(2 b+3 c)} m c_{i} z_{i k}^{-1}+\frac{a(2 b+c)+c\left(m c_{i} z_{i 1}^{-1}+m c_{i} z_{i 2}^{-1}\right)}{(2 b+c)(2 b+3 c)}
$$

Thus, we can write $q_{i k}^{*}=K_{i} z_{i k}^{-1}+H_{i}\left(z_{i 1}, z_{i 2}\right)$, where

$$
K_{i}:=-\frac{2 b+3 c}{(2 b+c)(2 b+3 c)} m c_{i}
$$

and

$$
H_{i}\left(z_{i 1}, z_{i 2}\right):=\frac{a(2 b+c)+c\left(m c_{i} z_{i 1}^{-1}+m c_{i} z_{i 2}^{-1}\right)}{(2 b+c)(2 b+3 c)} .
$$

Since the information structure is complete, the values of firms productivities are common knowledge when firms choose inputs. Hence, the value of $H_{i}\left(z_{i 1}, z_{i 2}\right)$ is known and given by

$$
\bar{H}_{i}=H_{i}\left(z_{i 1}, z_{i 2}\right) .
$$

(ii) Taking part (i) of this proposition as given, the firm k 's input decision is constrained by the following production possibility frontier:

$$
z_{i k} f_{i}\left(m_{i k, 1}, m_{i k, 2}\right)=q_{i k}^{*}=K_{i} z_{i k}^{-1}+\bar{H}_{i},
$$

which leads to

$$
\begin{equation*}
f_{i}\left(m_{i k, 1}, m_{i k, 2}\right) z_{i k}^{2}-\bar{H}_{i} z_{i k}-K_{i}=0 \tag{39}
\end{equation*}
$$

Assumption A. 3 implies that $\ell_{i k}$ and $m_{i k}$ are chosen in such a way that (39) is satisfied for the firm's productivity $z_{i k}>0$. Thus, in light of the quadratic formula,

$$
\begin{equation*}
z_{i k}=\frac{\bar{H}_{i} \pm \sqrt{\bar{H}_{i}^{2}+4 K_{i} f_{i}\left(m_{i k, 1}, m_{i k, 2}\right)}}{2 f_{i}\left(m_{i k, 1}, m_{i k, 2}\right)} . \tag{40}
\end{equation*}
$$

Hence, there exists a function \mathcal{M}_{i} such that $z_{i k}=\mathcal{M}_{i}\left(m_{i k, 1}, m_{i k, 2} ; \bar{H}_{i}\right)$.
Remark A.1. Although (39), in general, gives two distinct positive values for $z_{i k}$, the function \mathcal{M}_{i} is not required to be unique because this paper is not concerned about the identification of $z_{i k}$ per se. ${ }^{96}$

B Detail of Data

This section provides the detailed account of the data source used in my paper, and how I construct the empirical counterparts of the variables.

B. 1 Aggregate-Level Data

Data on wage-related concepts are obtained from the U.S. Bureau of Labor Statistics (BLS) through the Federal Reserve Bank of St. Louis (FRED) at annual frequency. In my model, labor is assumed to be frictionlessly mobile across sectors so that the wage W is common for all sectors. Thus I use "average hourly earnings of all employees, total private" as the empirical counterpart of my wage. In addition, I also obtain the measures of total number of employees (All Employees, Total Private) and of total hours worked per year (Hours of Wage and Salary Workers on Nonfarm Payrolls), from which I can compute the average hours worked per employee per year (see Appendix B.3). Note that both the total number of employees and total hours worked exclude farms mainly because of the peculiarities of the structure of the agricultural industry and characteristics of its workers: e.g., various definitions of agriculture, farms,

[^38]famers and farmworkers; considerable seasonal fluctuation in the employment (Daberkow and Whitener 1986). In this sense, the corresponding data for farms industry in my dataset should be considered being inputed by the average of other sectors.

Sectoral price index data is available at the Bureau of Economic Analysis (BEA). I use U.Chain-Type Price Indexes for Gross Output by Industry - Detail Level (A) as the data.

These are summarized in the following fact.
Fact B. 1 (Wage \& Sectional Price Index). The wage W^{*} and sectoral price indices $\left\{P_{i}^{*}\right\}_{i=1}^{N}$ are directly observed in the data.

B. 2 Sector-Level Data: Industry Economic Accounts (IEA)

Our analysis involves two types of sector-level data: namely, the input-output table and sector-inputspecific tax/subsidy, both of which come from the input-output accounts data of the Bureau of Economic Analysis (BEA). In line with the global economic accounting standards, such as the System of National Accounts 2008 (UN 2008), the BEA input-output table consists in two tables: the use and supply table.

The use table shows the uses of commodities (goods and services) by industries as intermediate inputs and by final users, with the columns indicating the industries and final users and the rows representing commodities. This table reports three pieces of information: intermediate inputs, final demand and value added. Each cell in the intermediate input section records the amount of a commodity purchased by each industry as an intermediate input, valued at producer' or purchasers' prices. ${ }^{97}$ The final demand section accounts for expenditure-side components of GDP. The value-added part bridges the difference between an industry's total output and the its total cost for intermediate inputs. I will further elaborate on this part in the upcoming section (Appendix B.2.2).

The supply table shows total supply of commodities by industries, with the columns indicating the industries and the rows representing commodities. This table comprises domestic output and imports. Each cell of the domestic output section presents the total amount of each commodity supplied domestically by each industry, valued at the basic prices. The import section records the total amount of each commodity imported from foreign countries, valued at the importers' customs frontier price (i.e., the c.i.f. valuation). ${ }^{98}$

Segmentation. My analysis is based on the BEA's industry classification at the summary level, which is roughly equivalent to the three-digit NAICS (North American Industry Classification System). I make two modifications in conjunction with the availability of Compustat data. First, I omit several industries

[^39]and products from my analysis. Following Bigio and La'O (2020), I exclude finance, insurance, real estate, rental and leasing (FIRE) sectors from my analysis.In the BEA's input-output table, these sectors are indexed by 521 CI , $523,524,525$, HS, ORE, and 532RL. I also follow Baqaee and Farhi (2020) in dropping two product categories: namely, Scrap, used and secondhand goods and Noncomparable imports and rest-of-the-world adjustment. These are indexed by "Used" and "Others," respectively. I again follow Baqaee and Farhi (2020) in removing the government sectors, which are reported with the indices 81, GFGD, GFGN, GFE, GSLG, and GSLE. Second, drawing on Gutiérrez and Philippon (2017), I merge some of the BEA's industries. This manipulation makes sure that each industry has a good coverage of Compustat firms (Gutiérrez and Philippon 2017). In my context, this also helps us focus on modestly imperfectly competitive markets. After all, I am left with 38 industries (Table 5).

Table 5: Mapping of BEA Industry Codes to Segments

BEA code	Industry	Mapped segment
111 CA	Farms	Farms, forestry, fishing, and related activities
113 FF	Forestry, fishing, and related activities	Farms, forestry, fishing, and related activities
211	Oil and gas extraction	Oil and gas extraction
212	Mining, except oil and gas	Mining, except oil and gas
213	Support activities for mining	Support activities for mining
22	Utilities	Utilities
23	Construction	Construction
311 FT	Food and beverage and tobacco products	Food and beverage and tobacco products
313 TT	Textile mills and textile product mills	Textile and apparel products
315AL	Apparel and leather and allied products	Textile and apparel products
321	Wood products	Wood products
322	Paper products	Paper products, printing, and related activities
323	Printing and related support activities	Paper products, printing, and related activities
324	Petroleum and coal products	Petroleum and coal products
325	Chemical products	Chemical products
326	Plastics and rubber products	Plastics, rubber and mineral products
327	Nonmetallic mineral products	Plastics, rubber and mineral products
331	Primary metals	Primary metals
332	Fabricated metal products	Fabricated metal products
333	Machinery	Machinery
334	Computer and electronic products	Computer and electronic products
335	Electrical equipment, appliances, and components	Electrical equipment, appliances, and components
3361 MV	Motor vehicles, bodies and trailers, and parts	Motor vehicles, bodies and trailers, and parts
33640 T	Other transportation equipment	Motor vehicles, bodies and trailers, and parts
337	Furniture and related products	Furniture and related products
339	Miscellaneous manufacturing	Miscellaneous manufacturing
42	Wholesale trade	Wholesale trade
441	Motor vehicle and parts dealers	Retail trade
445	Food and beverage stores	Retail trade
452	General merchandise stores	Retail trade
4A0	Other retail	Retail trade
481	Air transportation	Air transportation
482	Rail transportation	Railroad and truck transportation
483	Water transportation	Other transportation
484	Truck transportation	Railroad and truck transportation
485	Transit and ground passenger transportation	Other transportation
486	Pipeline transportation	Other transportation
4870S	Other transportation and support activities	Other transportation

BEA code	Industry	Mapped segment
493	Warehousing and storage	Other transportation
511	Publishing industries, except internet (includes software)	Publishing industries
512	Motion picture and sound recording industries	Motion picture and sound recording industries
513	Broadcasting and telecommunications	Broadcasting and telecommunications
514	Data processing, internet publishing, and other information services	Information and data processing services
521 CI	Federal Reserve banks, credit intermediation, and related activities	Omitted
523	Securities, commodity contracts, and investments	Omitted
524	Insurance carriers and related activities	Omitted
525	Funds, trusts, and other financial vehicles	Omitted
HS	Housing	Omitted
ORE	Other real estate	Omitted
532RL	Rental and leasing services and lessors of intangible assets	Omitted
5411	Legal services	Professional services
54120 P	Miscellaneous professional, scientific, and technical services	Professional services
5415	Computer systems design and related services	Professional services
55	Management of companies and enterprises	Omitted
561	Administrative and support services	Administrative and waste management
562	Waste management and remediation services	Administrative and waste management
61	Educational services	Educational services
621	Ambulatory health care services	Health care services
622	Hospitals	Hospitals and nursing
623	Nursing and residential care facilities	Hospitals and nursing
624	Social assistance	Health care services
711AS	Performing arts, spectator sports, museums, and related activities	Arts
713	Amusements, gambling, and recreation industries	Arts
721	Accommodation	Accommodation
722	Food services and drinking places	Food services and drinking places
81	Other services, except government	Omitted
GFGD	Federal general government (defense)	Omitted
GFGN	Federal general government (nondefense)	Omitted
GFE	Federal government enterprises	Omitted
GSLG	State and local general government	Omitted
GSLE	State and local government enterprises	Omitted
Used	Scrap, used and secondhand goods	Omitted
Other	Noncomparable imports and rest-of-the-world adjustment	Omitted

Note: This table shows the correspondence between the BEA's industry classification (at summary level) and my segmentation, which draws heavily on Gutiérrez and Philippon (2017). The first two columns ("BEA code" and "Industry") list the BEA codes and the corresponding industries as used in the BEA's input-output table. The third column ("Mapped segment") indicates the names of the segments I define.

B.2.1 Transformation to Symmetric Input-Output Tables

Although the use table comes very close to an empirical counterpart of the production network of my model, it cannot be directly used in my empirical analysis as it only shows the uses of each commodity by each industry, not the uses of each industrial product by each industry. This is because the BEA's accounting system allows for each industry to produce multiple commodities (e.g., secondary production), contradicting to my conceptualization. Hence I first need to convert the use table to a symmetric industry-by-industry input output table by transferring inputs and output over the rows in the use and supply
table, respectively. ${ }^{99}$ This reattribution of the commodities supplied will leave us with the industry-by-industry use table, which is my input-output table. This is accompanied by the transformed supply table, whose off-diagonal elements are all zero. ${ }^{100}$ To do this, I impose an assumption about how each commodity is used.

Assumption B. 1 (Fixed Product Sales Structures, (Eurostat 2008)). Each product has its own specific sales structure, irrespective of the industry where it is produced.

The term "sales structure" here refers to the shares of the respective intermediate and final users in the sales of a commodity. Under Assumption B.1, each commodity is used at the constant rates regardless of in which industry it is produced. For example, a unit of an manufacturing product supplied by agriculture industry will be transferred from the use of manufacturing product to that of agricultural products in the use table in the same proportion to the use of manufacturing products. ${ }^{101}$ Note that the value added part remains intact throughout this manipulation. Recorded in each cell of the intermediate inputs section of the resulting industry-by-industry table is the empirical counterpart of my $\sum_{k=1}^{N_{i}}\left(1-\tau_{i, j}\right) P_{i} m_{i k, j}$, and each cell of the compensation of employee corresponds to $\sum_{k=1}^{N_{i}} W \ell_{i k}$. These are the data that is used four constructing the production network in my empirical analysis as shown in the following fact.

Fact B.2. Under Assumption B.1, the input-output linkages $\boldsymbol{\omega}_{L}$ and Ω are recovered from the observables.
Proof. By Shephard lemma, ${ }^{102}$ it holds that for each $i, j \in \mathbf{N}$, the cost-based intermediate expenditure shares $\omega_{i, j}$ satisfies

$$
\begin{align*}
\omega_{i, j} & =\frac{\sum_{k=1}^{N_{i}}\left(1-\tau_{i, j}\right) P_{j} m_{i k, j}}{\sum_{k=1}^{N_{i}}\left\{\sum_{j^{\prime}=1}^{N}\left(1-\tau_{i, j^{\prime}}\right) P_{j^{\prime}} m_{i k, j^{\prime}}+W \ell_{i k}\right\}} \\
& =\frac{\sum_{k=1}^{N_{i}}\left(1-\tau_{i, j}\right) P_{j} m_{i k, j}}{\sum_{j^{\prime}=1}^{N} \sum_{k=1}^{N_{i}}\left(1-\tau_{i, j^{\prime}}\right) P_{j^{\prime}} m_{i k, j^{\prime}}+\sum_{k=1}^{N_{i}} W \ell_{i k}} . \tag{41}
\end{align*}
$$

Also, for each $i \in \mathbf{N}$, cost-based equilibrium factor expenditure shares $\omega_{i, L}$ satisfies:

$$
\begin{aligned}
\omega_{i, L} & =\frac{\sum_{k=1}^{N_{i}} W \ell_{i k}}{\sum_{k=1}^{N_{i}}\left\{\sum_{j^{\prime}=1}^{N}\left(1-\tau_{i, j^{\prime}}\right) P_{j^{\prime}} m_{i k, j^{\prime}}+W \ell_{i k}\right\}} \\
& =\frac{\sum_{k=1}^{N_{i}} W \ell_{i k}}{\sum_{j^{\prime}=1}^{N} \sum_{k=1}^{N_{i}}\left(1-\tau_{i, j^{\prime}}\right) P_{j^{\prime}} m_{i k, j^{\prime}}+\sum_{k=1}^{N_{i}} W \ell_{i k}} .
\end{aligned}
$$

[^40]Since $\left\{\sum_{k=1}^{N_{i}}\left(1-\tau_{i, j}\right) P_{j} m_{i k, j}\right\}_{i, j=1}^{N}$ and $\left\{\sum_{k=1}^{N_{i}} W \ell_{i k}\right\}_{i=1}^{N}$ are directly observed in the transformed industry-by-industry input-output table, I can immediately recover $\boldsymbol{\omega}_{L}$ and Ω, as desired.

Figure compares the input-output table based on the use table and transformed industry-by-industry input-output table.

B.2.2 Sectoral Tax/Subsidy

Given that the use table has been transformed into a symmetric industry-by-industry input-output table, I can proceed to back out the tax/subsidy from the transformed table. In this step, I exploit the feature of the use table that reports value added at basic and purchasers' prices. The value added measured at basic prices is composed of i) compensation of employees (V001), ii) gross operating surplus (V003) and iii) other taxes on production (T00OTOP) less subsidies (T00OSUB). The value added at producers' prices further entails iv) taxes on products (T00TOP) and imports less subsidies (T00SUB). ${ }^{103}$ According to BEA (2009), the tax-related components of (iii) and (iv) jointly include, among many others, sales and excise taxes, customs duties, property taxes, motor vehicle licenses, severance taxes, other taxes and special assessments as well as commodity taxes, while the subsidy-related components refer to monetary grants paid by government agencies to private business and to government enterprises at another level of government. ${ }^{104}$ I consider the sum of (iii) and (iv) to be the empirical counter part of the policy expenditure in my model. This choice is motivated by the mapping between the BEA's data construction and my conceptualization. First, the construction of data states:

$$
\text { Profits }_{i}=\left(\text { Revenue }_{i}+\text { TaxSubsidy }_{i}\right)-\left(\text { LaborCost }_{i}+\text { MaterialCost }_{i}+\text { TaxSubsidy }_{i}\right)
$$

$$
\begin{equation*}
\therefore \underbrace{\text { Revenue }- \text { MaterialCost }_{i}}_{\text {Value-added }}=\underbrace{\text { Profits }_{i}}_{\text {Gross operating profits }}+\underbrace{\text { LaborCost }_{i}}_{\text {Compensation of employees }}-\underbrace{\left(\text { TaxSubsidy }_{i}-\operatorname{TaxSubsidy}_{i}\right)}_{\text {Value-added taxes less subsidies }}, \tag{42}
\end{equation*}
$$

where TaxSubsidy 1_{i} is taxes less subsidies on revenues, and TaxSubsidy 2_{i} those on input costs. Notice that the value-added taxes less subsidies (TaxSubsidy $\left.1_{i}-\operatorname{TaxSubsidy} 2_{i}\right)$ are available in the data.

To back out tax/subsidy data from this table, I need to restrict the scope of analysis to sector-specific tax/subsidy.

Assumption B.2. Taxes and subsidies are specific to sectors: i.e., $\boldsymbol{\tau}:=\left\{\tau_{i}\right\}_{i=1}^{N}$.

[^41]Figure 4: Comparison of Input-Output Tables

Note: This figure illustrates the input-output table in terms of cost share of sectoral goods. Panel (a) shows the use table that is provided by BEA, while panel (b) reports the transformed industry-by-industry table. White cells indicate zero, while light, medium and dark grey cells represent the low $(0 \sim 0.2)$, medium $(0.2 \sim 0.5)$ and high $(0.5 \sim 1.0)$ cost shares, respectively.

Under this assumption, the theoretical counterpart of the data construction (42) is

$$
\begin{align*}
& \sum_{k=1}^{N_{i}} \pi_{i k}^{*}=\sum_{k=1}^{N_{i}} p_{i k}^{*} q_{i k}^{*}-\left\{W^{*} \ell_{i k}^{*}+\left(1-\tau_{i}\right) \sum_{j=1}^{N} P_{i}^{M^{*}} m_{i k, j}^{*}\right\} \\
& \therefore \underbrace{\sum_{k=1}^{N_{i}} p_{i k}^{*} q_{i k}^{*}-\sum_{j=1}^{N} P_{i}^{M^{*}} m_{i k, j}^{*}}_{\text {Value-added }}=\underbrace{\sum_{k=1}^{N_{i}} \pi_{i k}^{*}}_{\text {Gross operating profits }}+\underbrace{W^{*} \ell_{i k}^{*}}_{\text {Compensation of employees }}-\underbrace{\tau_{i} \sum_{j=1}^{N} P_{i}^{M^{*}} m_{i k, j}^{*}}_{\text {Value-added taxes less subsidies }} \tag{43}
\end{align*}
$$

On the basis of this formulation, I can back out ad-valorem taxes/subsidy from the constructed input-output table. This is summarized in the following fact.

Fact B.3. Under Assumptions B. 1 and B.2, sector-specific subsidies $\boldsymbol{\tau}:=\left\{\tau_{i}\right\}_{i=1}^{N}$ are recovered from the observables.

Proof. For each sector (industry) $i \in \mathbf{N}$, I have

$$
\begin{equation*}
\left(1-\tau_{i}\right) \sum_{j=1}^{N} \sum_{k=1}^{N_{i}} P_{j}^{*} m_{i k, j}^{*}=\sum_{j=1}^{N} \text { Interm Expend }_{i, j} \tag{44}
\end{equation*}
$$

where IntermExpend $_{i, j}$ means the sector i 's total expenditure on sector j, which is observed in the (i, j) entry of the industry-by-industry input-output table constructed in Appendix B.2.1. Meanwhile, comparing (42) to (43), I obtain

$$
\begin{equation*}
\tau_{i} \sum_{j=1}^{N} \sum_{k=1}^{N_{i}} P_{j}^{*} m_{i k, j}^{*}=V A T_{i} \tag{45}
\end{equation*}
$$

where $V A T_{i}$ stands for the sector i 's value-added taxes less subsidies, reported in the BEA use table.
Rearranging (44) and (45), I can recover the data for sector-specific taxes/subsidies:

$$
\tau_{i}=\frac{V A T_{i}}{V A T_{i}+\sum_{j=1}^{N} \text { IntermExpend }_{i, j}} .
$$

Remark B.1. Operationalizing the ad-valorem taxes/subsidies in this way, its conceptual definition should be interpreted as an overall extent of wedges that promotes or demotes the purchase of input goods.

B. 3 Firm-Level Data: Compustat Data

The data source for firm-level data is the Compustat data provided by the Wharton Research Data Services (WRDS). This database provides detailed information about a firm's fundamentals, based on
financial accounts. Though the coverage is limited to publicly traded firms, they tend to be much larger than private firms and thus account for the dominant part of the industry dynamics (Grullon et al. 2019).

For the analysis of my paper, I use the following items: Sales (SALES), Costs of Goods Sold (COGS), Selling, General \& Administrative Expense (SGA) and Number of Employees (EMP).

I basically follow De Loecker et al. (2020) and De Loecker et al. (2021) in constructing the empirical counterparts of the variables of my model. That is, SALES corresponds to the firm's revenue, COGS to the firm's variable costs, and SGA to the firm's fixed costs. Although my model abstracts away from fixed entry costs, I need to apportion labor and material inputs between the variable and fixed costs to recover labor and material inputs. To this end, De Loecker et al. (2020) rely on a parametric assumption, while my framework does not impose any particular functional form restriction on the firm-level production. I instead use the direct measurement of the number of employees (EMP), and assume that the cost shares of labor and material are constant for both fixed and variable costs.

Assumption B. 3 (Constant Cost Share). For each sector $i \in \mathbf{N}$ and each firm $k \in \mathbf{N}_{i}$, VariableLaborCost ${ }_{i k}$: VariableMaterialCost $_{i k}=$ FixedLaborCost ${ }_{i k}:$ FixedMaterialCost $_{i k}=\delta_{i k}: 1-\delta_{i k}$, where $\delta_{i k} \in[0,1]$ is a constant specific to firm k.

This assumption states that my empirical measurement of the variable costs $C O G S_{i k}$ and fixed costs $S G A_{i k}$ are made up of the same proportion of labor and material inputs.

B.3.1 Labor \& Material Inputs

As in De Loecker et al. (2021), my construction starts from combining $C O G S_{i k}$ and $S G A_{i k}$ to compute the total costs. The firm k 's total costs is given by:

$$
\begin{align*}
\text { TotalCosts }_{i k} & =\text { TotalLaborCost }_{i k}+\text { TotalMaterialCost }_{i k} \\
& =\text { VariableLaborCost }_{i k}+\text { FixedLaborCost }_{i k}+\text { VariableMaterialCost }_{i k}+\text { FixedMaterialCost }_{i k} \\
& =\underbrace{\text { VariableLaborCost }_{i k}+\text { VariableMaterialCost }_{i k}}_{\text {COGS }_{i k}}+\underbrace{\text { FixedLaborCost }_{i k}+\text { FixedMaterialCost }_{i k}}_{\text {SGA }_{i k}} \\
& =\operatorname{COGS}_{i k}+S G A_{i k} . \tag{46}
\end{align*}
$$

Since both $\operatorname{Cogs}_{i k}$ and $S G A_{i k}$ are observed in the data, I can compute the firm k 's total expense (TotalCost ${ }_{i k}$).

The total expenditure on labor input is

$$
\begin{align*}
\text { TotalLaborCosts }_{i k} & =\text { VariableLaborCosts } s_{i k}+\text { FixedLaborCosts } s_{i k} \\
& =W \times{\text { AverageHoursWorked } \times \underbrace{\text { Employees }_{i k}}_{\text {EMP }_{i k}}}=W \times \frac{\text { TotalHours }}{\text { TotalEmployees }} \times E M P_{i k} .
\end{align*}
$$

From Fact B.1, the wage W is directly observed in data. I can also observe both TotalHours and TotalEmployees in the BEA data. Moreover the Compustat data provide information about the number
of employees $\left(E M P_{i k}\right)$. Hence I can calculate the firm k 's total labor expense (TotalLaborCosts ${ }_{i k}$). Then, the total expenditure on material input is obtained by

$$
\begin{equation*}
\text { TotalMaterialCosts }_{i k}=\text { TotalCosts }_{i k}-\text { TotalLaborCosts }_{i k} . \tag{48}
\end{equation*}
$$

Next, I invoke Assumption B. 3 to derive,

$$
\begin{equation*}
\therefore \text { VariableLaborCost }_{i k}=\frac{1-\delta_{i k}}{\delta_{i k}} \text { VariableMaterialCost }_{i k}, \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\therefore \text { FixedLaborCost }_{i k}=\frac{1-\delta_{i k}}{\delta_{i k}} \text { FixedMaterialCost }_{i k} \text {, } \tag{50}
\end{equation*}
$$

From (49) and (50), I have

$$
\begin{aligned}
& \text { VariableMaterialCost }_{i k}+\text { FixedMaterialCost }_{i k}=\text { TotalMaterialCost }_{i k} \\
& \therefore \frac{\delta_{i k}}{1-\delta_{i k}}\left(\text { VariableLaborCost }_{i k}+\text { FixedLaborCost }_{i k}\right)=\text { TotalMaterialCost }_{i k} \\
& \quad \therefore \frac{\delta_{i k}}{1-\delta_{i k}} \text { TotalLaborCost }_{i k}=\text { TotalMaterialCost }_{i k},
\end{aligned}
$$

so that

$$
\begin{equation*}
\delta_{i k}=\frac{\text { TotalMaterialCost }_{i k}}{\text { TotalLaborCost }_{i k}+\text { TotalMaterialCost }_{i k}}, \tag{51}
\end{equation*}
$$

where both TotalLaborCost ${ }_{i k}$ and TotalMaterialCost ${ }_{i k}$ can be calculated according to (47) and (48), respectively.

Once again by Assumption B.3,

$$
\text { VariableMaterialCost }_{i k}=\frac{1-\delta_{i k}}{\delta_{i k}} \text { VariableLaborCost }_{i k},
$$

so that I have

$$
\begin{aligned}
& \text { VariableLaborCost }_{i k}+\text { VariableMaterialCost }_{i k}=\text { COGS }_{i k} \\
& \therefore \text { VariableLaborCost }_{i k}=\delta_{i k} C O G S_{i k},
\end{aligned}
$$

and

$$
\text { VariableMaterialCost }_{i k}=\left(1-\delta_{i k}\right) C O G S_{i k},
$$

Since $\delta_{i k}$ is given by (51), I can recover VariableLaborCost ${ }_{i k}$ (the empirical counterpart of $W^{*} \ell_{i k}^{*}$) and VariableMaterialCost ${ }_{i k}$ (the empirical counterpart of $P_{i}^{M^{*}} m_{i k}^{*}$) from data. In view of Fact B.1, I can divide the former by the wage W^{*}, and the latter by the sectoral cost index $P_{i}^{M^{*}}$ to obtain the firm's
labor $\ell_{i k}^{*}$ and material input $m_{i k}^{*}$. These are summarized in the following fact.
Fact B. 4 (Labor \& Material Inputs). Under Assumption B.3, the firm-level labor input $\ell_{i k}^{*}$ and material input $m_{i k}^{*}$ are recovered from the data.

B.3.2 Recovering Derived Demand for Sectoral Intermediate Goods

Since I lack separate data on the firm-level input demand for sectoral intermediate goods, I have to divid the firm's expenditure on material input in a way that is consistent with the configuration of the inputoutput linkage. To this end, I make additional assumptions on the form of aggregator function \mathcal{G}_{i} in (13). Specifically, I assume that the material input $m_{i k}$ aggregates sectoral intermediate goods according to the Cobb-Douglas production function: ${ }^{105}$

Assumption B.4. The material input $m_{i k}$ comprises sectoral intermediate goods according to the CobbDouglas production function:

$$
\begin{equation*}
m_{i k}=\prod_{j=1}^{N} m_{i k, j}^{\gamma_{i, j}} \tag{52}
\end{equation*}
$$

where $m_{i k, j}$ is sector j 's intermediate good demanded by firm k in sector i and $\gamma_{i, j}$ denotes the input share of sector j 's intermediate good with $\sum_{j=1}^{N} \gamma_{i, j}=1$.

Here it is implicitly assumed that the input share is the same within sector i. The producer price index for material input P_{i}^{M} is defined through the following cost minimization problem:

$$
\begin{align*}
P_{i}^{M}:= & \min _{\left\{m_{i k, j}^{\circ}\right\}_{j=1}^{N}} \sum_{j=1}^{N}\left(1-\tau_{i}\right) P_{j} m_{i k, j}^{\circ} \tag{53}\\
& \text { s.t. } \prod_{j=1}^{N}\left(m_{i k, j}^{\circ}\right)^{\gamma_{i, j}} \geq 1 .
\end{align*}
$$

In recovering the input demand for sectoral intermediate goods, I make use of the following fact.
Under Assumption B.4, with the aid of the formulation (53), I can recover both the cost index of material input and the input demand for sectoral intermediate goods from the observables.

Fact B. 5 (Identification of $\left.\gamma_{i, j}, P_{i}^{M} \& m_{i k, j}\right)$. Suppose that Assumptions B. 2 and B. 4 holds. Then, i) for each sector $i=\{1, \ldots, N\}$, the input shares $\left\{\gamma_{i, j}\right\}_{j=1}^{N}$, and the cost index for material input P_{i}^{M} are identified from the observables; and ii) for each sector $i=\{1, \ldots, N\}$ and for each firm $k \in \mathbf{N}_{i}$, the input demand for composite intermediate goods $\left\{m_{i k, j}\right\}_{j=1}^{N}$ are identified from the observables.

Proof. (i) From the first order conditions for the cost minimization, I have

$$
\left(1-\tau_{i}\right) P_{j^{\prime}} m_{i k, j^{\prime}}=\frac{\gamma_{i, j^{\prime}}}{\gamma_{i, j}}\left(1-\tau_{i}\right) P_{j} m_{i k, j},
$$

[^42]Substituting this into (41) leads to

$$
\omega_{i, j}=\frac{\sum_{k=1}^{N_{i}}\left(1-\tau_{i}\right) P_{j} m_{i k, j}}{\frac{1}{\gamma_{i, j}} \sum_{k=1}^{N_{i}}\left(1-\tau_{i}\right) P_{j} m_{i k, j}+\sum_{k=1}^{N_{i}} W \ell_{i k}},
$$

where I note $\sum_{j^{\prime}=1}^{N} \gamma_{i, j^{\prime}}=1$ by assumption. Rearranging this, I arrive at

$$
\begin{aligned}
\gamma_{i, j} & =\frac{\sum_{k=1}^{N_{i}}\left(1-\tau_{i}\right) P_{j} m_{i k, j}}{\frac{1}{\omega_{i, j}} \sum_{k=1}^{N_{i}}\left(1-\tau_{i}\right) P_{j} m_{i k, j}-\sum_{k=1}^{N_{i}} W \ell_{i k}} \\
& =\frac{\sum_{k=1}^{N_{i}}\left(1-\tau_{i}\right) P_{j} m_{i k, j}}{\sum_{j^{\prime}=1}^{N} \sum_{k=1}^{N_{i}}\left(1-\tau_{i}\right) P_{j^{\prime}} m_{i k, j^{\prime}}} \\
& =\frac{\omega_{i, j}}{\sum_{j^{\prime}=1}^{N} \omega_{i, j^{\prime}}} .
\end{aligned}
$$

Since terms in the right-hand side $\left\{\omega_{i, j^{\prime}}\right\}_{j^{\prime}=1}^{N}$ are observed in the data (see Appendix B.2.1), the parameter $\gamma_{i, j}$ can thus be identified for all $i \in \mathbf{N}$.

From (53), the cost index for material input P_{i}^{M} is given by:

$$
\begin{equation*}
P_{i}^{M}=\prod_{j=1}^{N} \frac{1}{\gamma_{i, j}^{\gamma_{i, j}}}\left\{\left(1-\tau_{i}\right) P_{j}\right\}^{\gamma_{i, j}} . \tag{54}
\end{equation*}
$$

Given that $\left\{\gamma_{i, j}\right\}_{j=1}^{N}$ are identified above, P_{i}^{M} is also identified.
(ii) Now, using again the first order condition for the cost minimization problem, I have

$$
\left(1-\tau_{i}\right) P_{j}=\nu_{i k} \gamma_{i, j} \frac{m_{i k}}{m_{i k, j}},
$$

where $\nu_{i k}$ is the marginal cost of constructing additional unit of material input (De Loecker and Warzynski 2012; De Loecker et al. 2016, 2020), which is P_{i}^{M}. Hence,

$$
\begin{equation*}
m_{i k, j}=\gamma_{i, j} \frac{P_{i}^{M}}{\left(1-\tau_{i}\right) P_{j}} m_{i k}, \tag{55}
\end{equation*}
$$

from which $m_{i k, j}$, the input demand for sector j 's composite intermediate good from sector i, is identified. This completes the poof.

B.3.3 Treatment of Capital

Our theoretical framework is static and abstract away from capital accumulation over periods of time. In reality, however, capital plays a great important role in firm's production and input decisions. As a matter of fact, various information about capital is reported in my data source. To make my conceptual framework consistent to the empirical measurement, I impose the following assumption.

Assumption B. 5 (Capital Endowment). For each sector $i \in \mathbf{N}$, i) each firm $k \in \mathbf{N}_{i}$ is endowed with capital stock before input decisions are made; and ii) capital stock enters the firm-level production function
in a Hicks-neutral fashion.
Assumption B. 5 (i) states that firms do not choose but are given capital, and this capital endowment is independent of labor and material inputs. Note that the capital endowment can still be a function of the firm's productivity. Assumption B. 5 (ii) means that the capital enters the production function in a multiplicative way. Under these two requirements, the firm's capital and productivity are nor discernible. This implies that the productivity in my model should be understood as a composite of these two components, or overall capability of production. For example, a "productive" firm in my model is so either because it has an efficient technology of production or because it is endowed with massive capital assets such as a large factory. Whichever the case is, capital endowment is treated as part of the unobservable firm-level productivity.

C Identification: Proofs of Theorems

In this section, theoretical results displayed in Section 5 are derived in a more general setup under a milder setting than the main text. Specifically, I allow for a sector-input-specific subsidy as in Liu (2019), and identify the firm-level quantity and price without imposing the HSA demand system (Assumption 3.4), followed by the identification of the residual inverse demand curve under Assumption 3.4. Accordingly, this section considers a policymaker who has control over sector-input-specific subsidies $\boldsymbol{\tau}:=\left\{\tau_{i, j}\right\}_{i, j=1}^{N}$ and wants to evaluate the effect of a particular subsidy $\tau_{n, n^{\prime}}$ on the country's GDP.

To investigate the behavior of $Y_{i}(\boldsymbol{\tau})$ in response to a change in $\tau_{n, n^{\prime}}$, I assume that it is totally differentiable in terms of $\tau_{n, n^{\prime}}$.

Assumption C. 1 (Total Differentiability). For each sector $i \in \mathbf{N}, Y_{i}(\boldsymbol{\tau})$ is totally differentiable with respect to $\tau_{n, n^{\prime}}$.

Under this assumption, taking total derivatives of (23) with respect to $\tau_{n, n^{\prime}}$ yields

$$
\begin{equation*}
\left.\frac{d Y_{i}(s)}{d s}\right|_{s=\tau_{n, n^{\prime}}}=\sum_{k=1}^{N_{i}}(\underbrace{\frac{d p_{i k}^{*}}{d \tau_{n, n^{\prime}}} q_{i k}^{*}}_{\text {price effects }}+\underbrace{p_{i k}^{*} \frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}}}_{\text {quantity effects }})-\sum_{k=1}^{N_{i}} \sum_{j=1}^{N}(\underbrace{\frac{d P_{j}^{*}}{d \tau_{n, n^{\prime}}^{\prime}} m_{i k, j}^{*}}_{\text {Ialth effects }}+\underbrace{P_{j}^{*} \frac{d m_{i k, j}^{*}}{d \tau_{n, n^{\prime}}}}_{\text {switching effects }}) . \tag{56}
\end{equation*}
$$

Clearly, the object of interest is characterized by the eight variables appearing in the right-hand side of (56): namely, $p_{i k}^{*}, q_{i k}^{*}, m_{i k, j}^{*}, \frac{d p_{i k}^{*}}{d \tau_{n, n^{\prime}}}, \frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}}, \frac{d m_{i k, j}^{*}}{d \tau_{n, n^{\prime}}}, P_{i}^{*}$, and $\frac{d P_{i}^{*}}{d \tau_{n, n^{\prime}}}$. The goal of my analysis therefore boils down to identifying the values of these variables.

C. 1 Recovering the Values of Firm-Level Quantity and Price

In this subsection, I derive the identification of the firm-level quantity and prices under a set of slightly milder conditions than described in the main text.

C.1.1 Identification of the Values of Markup

It can be shown that under the assumptions imposed in the main text (summarized below for the ease of exposition), I can immediately recover the firm-level markups from the observables. ${ }^{106}$

Assumption C. 2 (Input Markets). (i) The input markets are perfectly competitive. (ii) All inputs are variable.

This assumption is maintained in Section 3.3.
Fact C.1. Suppose that Assumptions 3.5 and C.2 and hold. For each sector $i \in \mathbf{N}$ and each firm $k \in \mathbf{N}_{i}$, the value of the firm-level markup $\mu_{i k}^{*}$ can be recovered from the data.

[^43]Proof. Observe that under Assumption C.2, the firm's markup $\mu_{i k}$ can be expressed as:

$$
\begin{aligned}
\mu_{i k}^{*} & :=\frac{p_{i k}^{*}}{M C_{i k}^{*}} \\
& =\frac{p_{i k}^{*}}{A C_{i k}^{*}} \frac{A C_{i k}^{*}}{M C_{i k}^{*}} \\
& =\frac{p_{i k}^{*} q_{i k}^{*}}{A C_{i k}^{*} q_{i k}^{*}} \frac{A C_{i k}^{*}}{M C_{i k}^{*}} \\
& =\frac{\operatorname{Revenue}_{i k}^{*}}{T C_{i k}^{*}} \frac{A C_{i k}^{*}}{M C_{i k}^{*}},
\end{aligned}
$$

where $M C_{i k}^{*}, A C_{i k}^{*}$, and $T C_{i k}^{*}$ represent the equilibrium values of the marginal, average, and total costs, respectively. Note here that $\frac{A C_{i k}^{*}}{M C_{i k}^{*}}$ is the elasticity of cost with respect to quantity (Syverson 2019), which in my case equals one due to Assumption 3.5 (i). Hence, I have

$$
\mu_{i k}^{*}=\frac{\text { Revenue }_{i k}^{*}}{T C_{i k}^{*}}
$$

i.e., the value of the firm's markup equals to the ratio of revenue to total costs, both of which are observed in the data. Thus, the value of the firm-level markup $\mu_{i k}^{*}$ is identified from the observables, as desired.

C.1.2 Identification of the Values of Quantity and Price

The following assumption is milder than Assumption 3.4 and encompasses the HSA demand system. Let $\mathscr{R}_{i}, \mathscr{L}_{i}$ and \mathscr{M}_{i} be the observed supports of revenue $r_{i k}$, labor input $\ell_{i k}$ and material input $m_{i k}$, respectively.

Assumption C. 3 (Residual Inverse Demand Function). For each sector $i \in \mathbf{N}$,
(i) there exist some functions $H_{1, i}, H_{2, i}: \mathbb{R}_{+}^{N_{i}} \rightarrow \mathbb{R}$ such that for each firm $k \in \mathbf{N}_{i}$, there exists a function $\psi_{i}: \mathscr{S}_{i} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{+}$such that $p_{i k}=\psi_{i}\left(q_{i k}, H_{1, i}\left(\mathbf{q}_{i}\right), H_{2, i}\left(\mathbf{q}_{i}\right) ; \mathcal{I}_{i}\right)$;
(ii) there exist some functions $\mathcal{H}_{1, i}, \mathcal{H}_{2, i}: \mathbb{R}_{i}^{N_{i}} \rightarrow \mathbb{R}$ such that a) there exists a function $\chi_{i}: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow$ \mathscr{S}_{i} such that $q_{i k}^{*}=\chi_{i}\left(z_{i k}, \mathcal{H}_{1, i}\left(\mathbf{z}_{i}\right), \mathcal{H}_{2, i}\left(\mathbf{z}_{i}\right) ; \mathcal{I}_{i}\right)$ for all $k \in \mathbf{N}_{i} ;$ and b) there exists a function $\mathcal{M}_{i}: \mathscr{L}_{i} \times \mathscr{M}_{i} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that $z_{i k}=\mathcal{M}_{i}\left(\ell_{i k}, m_{i k}, \mathcal{H}_{1, i}\left(\mathbf{z}_{i}\right), \mathcal{H}_{2, i}\left(\mathbf{z}_{i}\right) ; \mathcal{I}_{i}\right)$ for all $k \in \mathbf{N}_{i}$.

Assumption C. 3 (i) and (ii), respectively, states that the other players' choices and productivities matter only through some transformations that are common across firms in the same sector: i.e., these jointly constitute sufficient statistics for competitors' quantity decisions and productivities. In particular, the assumption (i) embeds the HSA demand system described in Assumption 3.4 in that $H_{1, i}(\cdot)$ and $H_{2, i}(\cdot)$ corresponding to the quantity index $A_{i}(\cdot)$ in (11) but is not necessarily constrained by Assumption 3.4. ${ }^{107}$ This assumption moreover includes the case of a homothetic demand system with direct implicit additivity (HDIA) and a homothetic demand system with indirect implicit demand system (HIIA), proposed in

[^44](Matsuyama and Ushchev 2017). Note here that Assumption C. 3 (i) does not require homotheticity of the demand system.

Remark C.1. In principle, Assumption C.3 can be extended to an arbitrary number of aggregator functions $H(\cdot)$ and $\mathcal{H}(\cdot)$ insofar as they are all common across firms in the same sector.

To facilitate exposition, I introduce a tilde notation to denote the logarithm of each variable. For instance, I write the logarithms of firm's revenue, labor and material inputs, and productivity as $\tilde{r}_{i k}, \tilde{\ell}_{i k}$, $\tilde{m}_{i k}$ and $\tilde{z}_{i k}$, respectively. Also, the logarithms of firm's output quantity and price are expressed as:

$$
\begin{equation*}
\tilde{q}_{i k}:=\ln q_{i k}=\tilde{f}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k} ; \tilde{z}_{i k}\right), \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{p}_{i k}:=\ln p_{i k}=\tilde{\psi}_{i}\left(\tilde{q}_{i k}, \tilde{H}_{1, i}\left(\tilde{\mathbf{q}}_{i}\right), \tilde{H}_{2, i}\left(\tilde{\mathbf{q}}_{i}\right) ; \mathcal{I}_{i}\right), \tag{58}
\end{equation*}
$$

where $\tilde{f}_{i}(\cdot):=\left(\ln \circ f_{i} \circ \exp \right)(\cdot), \tilde{\psi}_{i k}(\cdot):=\left(\ln \circ \psi_{i k} \circ \exp \right)(\cdot)$, and $\tilde{H}_{1, i}(\cdot):=\left(\ln \circ H_{i} \circ \exp \right)(\cdot)$ with $\tilde{H}_{2, i}(\cdot)$ being analogously defined. Correspondingly, the observed supports for $r_{i k}, \ell_{i k}$ and $m_{i k}$ are denoted by $\tilde{\mathscr{R}}_{i}, \tilde{\mathscr{L}}_{i}$ and $\tilde{\mathscr{M}}_{i}$, respectively. In what follows, I let the aggregator functions $H_{1, i}, H_{2, i}$ and the information set \mathcal{I}_{i} be absorbed in the sector index i for the sake of brevity.

Let $\frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{\ell}_{i k}}$ and $\frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{m}_{i k}}$, respectively, denote the equilibrium values of the first-order derivatives of the \log-production function with respect to log-labor and \log-material: i.e.,

$$
\frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{\ell}_{i k}}:=\left.\frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}\right|_{\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)=\left(\tilde{\ell}_{i k}^{*}, \tilde{m}_{i k}^{*}\right)},
$$

and $\frac{\left.\partial \tilde{f}_{i}(\cdot)\right)^{*}}{\partial \tilde{m}_{i k}}$ is analogously defined.
It can easily be shown that $\frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{X}_{i k}}$ and $\frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{m}_{i k}}$ are identified from the data.
Proposition C.1. Suppose that Assumptions 3.5 and C.2 hold. Then, the equilibrium values of the derivative of the production function with respect to labor and material can be recovered from the observables.

Proof. Under Assumptions 3.5 and C.2, the firm's input cost minimization problem is well-defined and has interior solutions only. For a given level of output $\tilde{q}_{i k}^{*}$, the Lagrange function associated to the firm's cost minimizing problem in terms of the logarithm variables reads:

$$
\tilde{\mathcal{L}}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}, \xi_{i k}\right):=\exp \left\{\tilde{W}+\tilde{\ell}_{i k}\right\}+\exp \left\{\tilde{P}_{i}^{M}+\tilde{m}_{i k}\right\}-\xi_{i k}\left(\exp \left\{\tilde{f}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k} ; \tilde{z}_{i k}\right)\right\}-\exp \left\{\tilde{q}_{i k}^{*}\right\}\right)
$$

where $\xi_{i k}$ represents the Lagrange multiplier indicating the marginal cost of producing an additional unit of output at the given level $\tilde{q}_{i k}^{*}$ (De Loecker and Warzynski 2012; De Loecker et al. 2016, 2020). The first
order conditions at $\tilde{q}_{i k}^{*}$ are given by

$$
\begin{align*}
& {\left[\tilde{\ell}_{i k}\right]: \exp \left\{\tilde{W}^{2}+\tilde{\ell}_{i k}^{*}\right\}-\xi_{i k} \frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{\ell}_{i k}} \exp \left\{\tilde{f}_{i}\left(\tilde{\ell}_{i k}^{*}, \tilde{m}_{i k}^{*} ; \tilde{z}_{i k}\right)\right\}=0} \tag{59}\\
& {\left[\tilde{m}_{i k}\right]: \exp \left\{\tilde{P}_{i}^{M}+\tilde{m}_{i k}^{*}\right\}-\xi_{i k} \frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{m}_{i k}} \exp \left\{\tilde{f}_{i}\left(\tilde{\ell}_{i k}^{*}, \tilde{m}_{i k}^{*} ; \tilde{z}_{i k}\right)\right\}=0} \tag{60}
\end{align*}
$$

where $\tilde{\ell}_{i k}^{*}$ and $\tilde{m}_{i k}^{*}$, respectively, are labor and material inputs corresponding to the given $q_{i k}^{*}$. Taking the ratio between (59) and (60), I have

$$
\begin{equation*}
\frac{\frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{\partial}_{i k}}}{\frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{m}_{i k}}}=\frac{\exp \left\{\tilde{W}+\tilde{\ell}_{i k}^{*}\right\}}{\exp \left\{\tilde{P}_{i}^{M}+\tilde{m}_{i k}^{*}\right\}} \tag{61}
\end{equation*}
$$

Here, due to Assumption 3.5 (i),

$$
\frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{\ell}_{i k}}+\frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{m}_{i k}}=1
$$

so that (61) gives

$$
\begin{aligned}
\frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{\ell}_{i k}} & =\frac{\exp \left\{\tilde{W}+\tilde{\ell}_{i k}^{*}\right\}}{\exp \left\{\tilde{W}+\tilde{\ell}_{i k}^{*}\right\}+\exp \left\{\tilde{P}_{i}^{M}+\tilde{m}_{i k}^{*}\right\}} \\
\frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{m}_{i k}} & =\frac{\exp \left\{\tilde{P}_{i}^{M}+\tilde{m}_{i k}^{*}\right\}}{\exp \left\{\tilde{W}+\tilde{\ell}_{i k}^{*}\right\}+\exp \left\{\tilde{P}_{i}^{M}+\tilde{m}_{i k}^{*}\right\}} .
\end{aligned}
$$

Since both $\exp \left\{\tilde{W}+\tilde{\ell}_{i k}^{*}\right\}$ and $\exp \left\{\tilde{P}_{i}^{M}+\tilde{m}_{i k}^{*}\right\}$ are available in the data, I thus can identify $\frac{\partial \tilde{f}_{i}(\cdot){ }^{*}}{\partial \tilde{\ell}_{i k}}$ and $\frac{\partial \tilde{f}_{i}(\cdot)^{*}}{\partial \tilde{m}_{i k}}$ from the observables, as claimed.

Next, I closely follows Kasahara and Sugita (2020) in identifying the equilibrium values of firm-level output quantity and price and thus the notations are intentionally set closed to theirs.

To begin with, I admit a measurement error in the observed log-revenue: ${ }^{108}$

$$
\begin{aligned}
\tilde{r}_{i k} & =\tilde{\psi}_{i}\left(\tilde{q}_{i k}\right)+\tilde{q}_{i k}+\tilde{\eta}_{i k} \\
& =\tilde{\varphi}_{i}\left(\tilde{q}_{i k}\right)+\tilde{\eta}_{i k} \\
& =\tilde{\varphi}_{i}\left(\tilde{f}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}, \tilde{\mathcal{M}}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)\right)+\tilde{\eta}_{i k}\right. \\
& =\tilde{\phi}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)+\tilde{\eta}_{i k},
\end{aligned}
$$

where $\tilde{\varphi}_{i}\left(\tilde{q}_{i k}\right):=\tilde{\psi}_{i}\left(\tilde{q}_{i k}\right)+\tilde{q}_{i k}$, and $\tilde{\phi}_{i}(\cdot)$ is the nonparametric component of the revenue function in terms of labor and material inputs satisfying $\tilde{\phi}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)=\tilde{\varphi}_{i}\left(\tilde{f}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}, \tilde{\mathcal{M}}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)\right)\right.$. The additive separability

[^45]of the \log measurement error $\tilde{\eta}_{i k}$ is chosen to conform to the bulk of the literature on identification and estimation of production functions. ${ }^{109}$

Towards identification, it is posited that the econometrician has knowledge about the following conditions.

Assumption C.4. (i) Strict Exogeneity. $E\left[\tilde{\eta}_{i k} \mid \tilde{\ell}_{i k}, \tilde{m}_{i k}\right]=0$. (ii) Continuous Differentiability. $\phi_{i}(\cdot)$ is at least first differentiable in each of its argument. (iii) Normalization. For each $i \in \mathbf{N}$ and each $k \in \mathbf{N}_{i}$, there exists a pair of labor and material inputs $\left(\tilde{\ell}_{i k}^{\circ}, \tilde{m}_{i k}^{\circ}\right) \in \mathscr{L}_{i} \times \mathscr{M}_{i}$ such that $f_{i}\left(\tilde{\ell}_{i k}^{\circ}, \tilde{m}_{i k}^{\circ} ; z_{i k}\right)=0$.

Lemma C.1. Suppose that Assumptions 3.5, C.2, and C.4 hold. Then, the logarithms of the firm-level output quantity $\tilde{q}_{i k}^{*}$ and price $\tilde{p}_{i k}^{*}$ can be identified up to scale from the observables.

Proof. The proof proceeds in three steps.

Step 1:

The first step identifies the firm's revenue free of the measurement errors $\overline{\tilde{r}}_{i k}$ in terms of $\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)$, eliminating the measurement error $\tilde{\eta}_{i k}$. From Assumption C. 4, I can identify $\tilde{\phi}_{i}(\cdot), \overline{\tilde{r}}_{i k}$ and $\tilde{\varepsilon}_{i k}$ according to

$$
\begin{aligned}
& \tilde{\phi}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)=E\left[\tilde{r}_{i k} \mid \tilde{x}_{i k}\right] \\
& \overline{\tilde{r}}_{i k}=\tilde{\phi}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right) ; \text { and } \\
& \tilde{\eta}_{i k}=\tilde{r}_{i k}-\overline{\tilde{r}}_{i k}
\end{aligned}
$$

Step 2:

Next, I aim to identify the derivative of the inverse of the revenue function $\tilde{\varphi}_{i}$. By definition, it is true that

$$
\begin{equation*}
\tilde{f}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}, \tilde{\mathcal{M}}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)\right)=\tilde{\varphi}_{i}^{-1}\left(\overline{\tilde{r}}_{i k}\right) \tag{62}
\end{equation*}
$$

where I know from the identification result above that $\overline{\tilde{r}}_{i k}=\ln K_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)$. Taking derivatives of (62) with respect to $\tilde{\ell}_{i k}$ and $\tilde{m}_{i k}$ derivers

$$
\begin{align*}
& \frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}+\frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{z}_{i k}} \frac{\partial \mathcal{M}(\cdot)_{i}}{\partial \tilde{\ell}_{i k}}=\frac{\partial \tilde{\varphi}_{i}^{-1}(\cdot)}{\partial \tilde{\tilde{r}}_{i k}} \frac{\partial \tilde{\phi}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}} \tag{63}\\
& \frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{m}_{i k}}+\frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{z}_{i k}} \frac{\partial \tilde{\mathcal{M}}_{i}(\cdot)}{\partial \tilde{m}_{i k}}=\frac{\partial \tilde{\varphi}_{i}^{-1}(\cdot)}{\partial \tilde{r}_{i k}} \frac{\partial \tilde{\phi}_{i}(\cdot)}{\partial \tilde{m}_{i k}} \tag{64}
\end{align*}
$$

for all $\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right) \in \tilde{\mathscr{L}}_{i} \times \tilde{\mathscr{M}}_{i}$. Here notice that $\frac{d \tilde{\varphi}_{i}^{-1}(\cdot)}{d \tilde{r}_{i k}}=\left(\frac{d \tilde{\varphi}_{i}(\cdot)}{d \tilde{q}_{i k}}\right)^{-1}$, with the right-hand side being the firm's markup (Kasahara and Sugita 2020). Owing to Fact C.1, the equilibrium firm's markup (in log)

[^46]$\tilde{\mu}_{i k}$ is obtained by
$$
\tilde{\mu}_{i k}=\overline{\tilde{r}}_{i k}-\tilde{T C_{i k}}\left(\tilde{\ell}_{i k}^{*}, \tilde{m}_{i k}^{*}\right),
$$
where $\tilde{T C}_{i k}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right):=\ln \left[\exp \left\{\tilde{W}+\tilde{\ell}_{i k}\right\}+\exp \left\{\tilde{P}_{i}^{M}+\tilde{m}_{i k}\right\}\right]$.
Thus, $\frac{d \tilde{\varphi}_{i}^{-1}(\cdot)}{d \tilde{r}_{i k}}$ is identified as
$$
\frac{\partial \tilde{\varphi}_{i}^{-1}(\cdot)}{\partial \tilde{r}_{i k}}=\tilde{\phi}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)-\ln \left[\exp \left\{\tilde{W}+\tilde{\ell}_{i k}\right\}+\exp \left\{\tilde{P}_{i}^{M}+\tilde{m}_{i k}\right\}\right] .
$$

Since the values of $\frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}$ and $\frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{m}_{i k}}$ are identified in Proposition C.1, I can also identify $\frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{z}_{i k}} \frac{\partial \tilde{\mathcal{M}}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}$ and $\frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{z}_{i k}} \frac{\partial \tilde{\mathcal{M}}_{i}(\cdot)}{\partial \tilde{m}_{i k}}$, respecitively, through (63) and (64):

$$
\begin{equation*}
\frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{z}_{i k}} \frac{\partial \tilde{\mathcal{M}}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}=\frac{\partial \tilde{\varphi}_{i}^{-1}(\cdot)}{\partial \tilde{\tilde{r}}_{i k}} \frac{\partial \tilde{\phi}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}-\frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}, \tag{65}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{z}_{i k}} \frac{\partial \tilde{\mathcal{M}}_{i}(\cdot)}{\partial \tilde{m}_{i k}}=\frac{\partial \tilde{\varphi}_{i}^{-1}(\cdot)}{\partial \tilde{r}_{i k}} \frac{\partial \tilde{\phi}_{i}(\cdot)}{\partial \tilde{m}_{i k}}-\frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{m}_{i k}} \tag{66}
\end{equation*}
$$

Step 3: The final step recovers the realized value of firm-level output quantity by means of integration:

$$
\begin{aligned}
\tilde{q}_{i k}^{*} & =\tilde{f}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}, \tilde{z}_{i k}\right) \\
& =\int_{\tilde{\ell}_{i k}}^{\tilde{\ell}_{i k}}\left(\frac{\partial \tilde{f}_{i}}{\partial \tilde{\ell}_{i k}}+\frac{\partial \tilde{f}_{i}}{\partial \tilde{z}_{i k}} \frac{\partial \tilde{\mathcal{M}}_{i}}{\partial \tilde{\ell}_{i k}}\right)\left(s, \tilde{m}_{i k}\right) d s+\int_{\tilde{m}_{i k}^{\circ}}^{\tilde{m}_{i k}}\left(\frac{\partial \tilde{f}_{i}}{\partial \tilde{m}_{i k}}+\frac{\partial \tilde{f}_{i}}{\partial \tilde{z}_{i k}} \frac{\partial \tilde{\mathcal{M}}_{i}}{\partial \tilde{m}_{i k}}\right)\left(\tilde{\ell}_{i k}^{\circ}, s\right) d s,
\end{aligned}
$$

where I note that the value of $\tilde{f}_{i}\left(\tilde{\ell}_{i k}^{\circ}, \tilde{m}_{i k}^{\circ}, \tilde{z}_{i k}\right)$ is known to the econometrician in light of Assumption C. 4 (iii).

Lastly, I can also recover the realized value of the firm-level output price $\tilde{p}_{i k}^{*}$ through:

$$
\tilde{p}_{i k}^{*}=\overline{\tilde{r}}_{i k}-\tilde{q}_{i k}^{*} .
$$

This completes the proof.
Remark C.2. (i) Lemma C. 1 rests on the identifiability of the value of the firm-level markup $\mu_{i k}$ (Fact C.1).Kasahara and Sugita (2020) instead exploit the panel structure of their dataset to first identify the firm's productivity from the observables. my framework, on the contrary, is static in nature, which prohibits the use of panel data. In this light, the use of Fact C. 1 can be considered a compromise between the data availability and the model assumptions. (ii) Notice that I are not concerned with identifying the firm's productivity per se, and thus the proof of Lemma C. 1 does not invoke the feature of the Hicksneutral productivity in the firm-level production function (14): i.e., the lemma goes through the case of non-Hicks-neutral productivity as studied Demirer (2022) and Pan (2022). Under Hicks-neutrality, it holds $\frac{\partial \hat{f}_{i} \cdot()}{\partial z_{i k}}=1$.

Having Lemma C. 1 established, the firm-level quantity and price can immediately be recovered by reverting (57) and (58).

Proposition C.2. Suppose that the assumptions required in Lemma C. 1 hold. Then the equilibrium values of the firm-level quantity $q_{i k}^{*}$ and price $p_{i k}^{*}$ are identified up to scale from the observables.

C. 2 Recovering Demand Function (Sectoral Aggregator)

I consider recovering the inverse demand function To begin with, each sectoral aggregator transforms firm-level products into a single sectoral good through based on the cost minimization problem. This defines the following unit cost condition: for each $i=1, \ldots, N$,

$$
\begin{align*}
P_{i}:= & \min _{\left\{e_{i k}^{\circ}\right\}_{i=1}^{N}} \sum_{k=1}^{N_{i}} p_{i k} e_{i k}^{\circ} \tag{67}\\
& \text { s.t. } \quad F_{i}\left(\left\{e_{i k}^{\circ}\right\}_{k=1}^{N_{i}}\right) \geq 1,
\end{align*}
$$

where $p_{i k}$ is the price of a product set by firm k in sector i.
By solving this, it follows that there exists a mapping $\mathcal{P}_{i}: \mathscr{S}_{i}^{N_{i}} \rightarrow \mathbb{R}_{+}$such that

$$
\begin{equation*}
P_{i}=\mathcal{P}_{i}\left(\mathbf{q}_{i} ; \mathcal{I}_{i}\right) . \tag{68}
\end{equation*}
$$

C.2.1 HSA Demand System

With my notation, the HSA demand system in Assumption 3.4 can be expressed as follow. First, by definition

$$
\Phi_{i}:=\sum_{k=1}^{N_{i}} p_{i k}^{*} q_{i k}^{*},
$$

where $p_{i k}^{*}$ and $q_{i k}^{*}$ are the equilibrium (realized) values of firm-level price and quantity. Then I can take

$$
\begin{equation*}
\Phi_{i}=\sum_{k=1}^{N_{i}} \varphi_{i}\left(q_{i k}^{*}\right), \tag{69}
\end{equation*}
$$

where $r_{i k}=\varphi_{i}\left(q_{i k}\right)$ with $\varphi_{i}(\cdot):=\left(\exp \circ \tilde{\varphi}_{i} \circ \ln \right)(\cdot)$.
Next, the residual inverse demand function faced by firm k in sector i takes the form of

$$
\begin{equation*}
p_{i k}=\frac{\Phi_{i}}{q_{i k}} \Psi_{i}\left(\frac{q_{i k}}{A_{i}\left(\mathbf{q}_{i}\right)}\right), \tag{70}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{i}\left(q_{i k}\right)=\frac{\varphi_{i}\left(q_{i k}\right)}{\Phi_{i}} \tag{71}
\end{equation*}
$$

with

$$
\begin{equation*}
\sum_{k=1}^{N_{i}} \Psi_{i}\left(\frac{q_{i k}}{A_{i}\left(\mathbf{q}_{i}\right)}\right)=1 \tag{72}
\end{equation*}
$$

C.2.2 Proof

I first identify the quantity index $A_{i}(\cdot)$ over the entire support $\mathscr{S}_{i}^{N_{i}}$. This is shown in Kasahara and Sugita (2020).

Lemma C. 2 (Identification of A_{i}; Kasahara and Sugita (2020)). Suppose that the same assumptions in Lemma C. 1 are satisfied. Assume moreover that Assumption 3.4 holds with (69) - (72). Then, the quantity index $A_{i}\left(\mathbf{q}_{i}\right)$ is identified.

Under Lemma C.2, the quantity index $A_{i}(\cdot)$ is nonparametrically identified as a function of \mathbf{q}_{i}, so that its derivatives can also be nonparametrically identified.

Corollary C. 1 (Identification of $\frac{\partial A_{i}(\cdot)}{\partial q_{i k}}$ and $\left.\frac{\partial^{2} A_{i}(\cdot)}{\partial q_{i k} q_{i k^{\prime}}}\right)$. Suppose that the same assumptions required in Lemma C. 2 hold. Then, for each $i \in \mathbf{N}$, i) $\frac{\partial A_{i}(\cdot)}{\partial q_{i k^{\prime}}}$ and ii) $\frac{\partial^{2} A_{i}(\cdot)}{\partial q_{i k} q_{i k^{\prime}}}$ are identified for all $k, k^{\prime} \in \mathbf{N}_{i}$.

The identified quantity index $A_{i}(\cdot)$ can be combined once again with (69) - (72) to recover the residual inverse demand functions faced by firms under Assumption 3.4.

Proposition C.3. Suppose that the same assumptions required in Lemma C.2 hold. Then, the residual inverse demand functions $\psi_{i}(\cdot)$ can be identified from the observables.

For each sector $i \in \mathbf{N}$ and for each firm $k \in \mathbf{N}_{i}$, let $m r_{i k}: \mathscr{S}_{i} \times \mathscr{S}_{i}^{N_{i}-1} \rightarrow \mathbb{R}$ be the marginal revenue function; that is, $m r_{i k}\left(q_{i k}, \mathbf{q}_{i,-k} ; \mathcal{I}_{i}\right):=\frac{\partial \psi_{i}(\cdot)}{\partial q_{i k}} q_{i k}+p_{i k}$. Given Lemma C.2, it is immediate to show that for each $k \in \mathbf{N}_{i}, m r_{i k}(\cdot)$ and its partial derivatives $\frac{\partial m r_{i k}(\cdot)}{\partial q_{i k^{\prime}}}$ for each $k^{\prime} \in \mathbf{N}_{i}$ is identified.

Lemma C. 3 (Identification of Marginal Revenue Function). Suppose that the assumptions required in Lemma C.2 are satisfied. Then, i) the firm-level marginal revenue function $m r_{i k}(\cdot)$ and ii) its partial derivatives $\frac{\partial m r_{i k}(\cdot)}{\partial q_{i k^{\prime}}}$ for each $k^{\prime} \in \mathbf{N}_{i}$ are identified.

I can further recover the sectoral aggregator $F_{i}(\cdot)$, the partial derivatives of $F_{i}(\cdot)$ with respect to $q_{i k}$ (denoted by $\frac{\partial F_{i}(\cdot)}{\partial q_{i k}}$) and the partial derivatives of $\mathcal{P}_{i}(\cdot)$ with respect to $q_{i k}$ (denoted by $\frac{\mathcal{P}_{i}(\cdot)}{\partial q_{i k}}$) for all $k \in \mathbf{N}_{i}$ are identified under an additional normalization condition.

Assumption C. 5 (Normalization of HSA Demand System). There exists a collection of constants $\left\{c_{i k}\right\}_{k=1}^{N_{i}}$ such that $F_{i}\left(\left\{c_{i k}\right\}_{k=1}^{N_{i}}\right)=1$.

Lemma C. 4 (Identification of Sectoral Aggregators). Suppose that the assumptions required in Lemma C. 2 are satisfied. Assume moreover that Assumption C. 5 holds. Then, i) the sectoral aggregator $F_{i}(\cdot)$, and ii) the derivatives $\frac{\partial F_{i}(\cdot)}{\partial q_{i k}}$ and $\frac{\mathcal{P}_{i}(\cdot)}{\partial q_{i k}}$ for each $k^{\prime} \in \mathbf{N}_{i}$, are identified as a function of \mathbf{q}_{i}. In particular, evaluated at the realized values, it holds that $\frac{\partial F_{i}(\cdot)^{*}}{\partial q_{i k}}=\frac{p_{i k k}^{*}}{P_{i}^{*}}$ and $\frac{\mathcal{P}_{i}(\cdot)^{*}}{\partial q_{i k}}=-\frac{p_{i k}^{*}}{Q_{i}^{*}}$.

Proof. i) By Proposition 1 (i) and Remark 3 (self-duality) of Matsuyama and Ushchev (2017), there exists a unique monotone, convex, continuous and homothetic rational preference over the support of q associated to the HSA inverse demand system (70) - (72). Clearly, this preference corresponds to the sectoral aggregator F_{i}. Moreover, a variant of Proposition 1 (ii) of Matsuyama and Ushchev (2017) implies that Q_{i} can be expressed as ${ }^{110}$

$$
\begin{equation*}
\ln F_{i}\left(\mathbf{q}_{i}\right)=\ln A_{i}\left(\mathbf{q}_{i}\right)+\sum_{k=1}^{N_{i}} \int_{c_{i k}}^{q_{i k} / A_{i}\left(\mathbf{q}_{i}\right)} \frac{\Psi_{i}(\zeta)}{\zeta} d \zeta \tag{73}
\end{equation*}
$$

where $\left\{c_{i k}\right\}_{k=1}^{N_{i}}$ satisfy Assumption C.5.
Since, by Lemma C.2, $A_{i}(\cdot)$ is identified, it remains to prove that for each $k \in \mathbf{N}, \frac{\Psi_{i}(\zeta)}{\zeta}$ is identified for all $\zeta \in\left[c_{i k}, \frac{q_{i k}}{A_{i}\left(\mathbf{q}_{i}\right)}\right]$.

Observe that φ_{i} in (71) is obtained by taking the continuous transformation and inverse of $\tilde{\varphi}_{i}^{-1}$, which is identified in the proof of Lemma C.1. Moreover, notice that for the realized values $\left\{q_{i k}^{*}\right\}_{k=1}^{N_{i}}$, I can recover Φ_{i} using (69): i.e.,

$$
\Phi_{i}=\sum_{k=1}^{N_{i}} \varphi_{i}\left(q_{i k}^{*}\right),
$$

where I emphasize that Φ_{i} is a constant that firms take as given. Then the identification of $\frac{\Psi_{i}(\zeta)}{\zeta}$, for $\zeta \in\left[c_{i k}, \frac{q_{i k}}{A_{i}\left(\mathbf{q}_{i}\right)}\right]$, comes directly from its construction (71).

Hence, I can identify $F_{i}(\cdot)$ as a function of \mathbf{q}_{i}.
ii) Taking partial derivatives of (73) with respect to $q_{i k}$: for all $\mathbf{q}_{i} \in \mathscr{S}_{i}^{N_{i}}$,

$$
\frac{\frac{\partial F_{i}(\cdot)}{\partial q_{i k}}}{F_{i}\left(\mathbf{q}_{i}\right)}=\frac{\frac{\partial A_{i}(\cdot)}{\partial q_{i k}}}{A_{i}\left(\mathbf{q}_{i}\right)}+\frac{1}{q_{i k}} \Psi_{i}\left(\frac{q_{i k}}{A_{i}}\right)-\left(\sum_{k^{\prime}=1}^{N_{i}} \Psi_{i}\left(\frac{q_{i k^{\prime}}}{A_{i}}\right)\right) \frac{1}{A_{i}\left(\mathbf{q}_{i}\right)} \frac{\partial A_{i}(\cdot)}{\partial q_{i k}},
$$

so that by construction

$$
\begin{aligned}
\frac{\partial F_{i}(\cdot)}{\partial q_{i k}} & =F_{i}\left(\mathbf{q}_{i}\right)\left\{\left(1-\sum_{k^{\prime}=1}^{N_{i}} \Psi_{i}\left(\frac{q_{i k^{\prime}}}{A_{i}}\right)\right)\right\} \frac{1}{A_{i}} \frac{\partial A_{i}}{\partial q_{i k}}+\frac{1}{q_{i k}} \Psi_{i}\left(\frac{q_{i k}}{A_{i}\left(\mathbf{q}_{i}\right)}\right) \\
& =F_{i}\left(\mathbf{q}_{i}\right) \frac{1}{q_{i k}} \Psi_{i}\left(\frac{q_{i k}}{A_{i}\left(\mathbf{q}_{i}\right)}\right) \\
& =F_{i}\left(\mathbf{q}_{i}\right) \frac{1}{q_{i k}} \frac{\varphi\left(\frac{q_{i k}}{A_{i}\left(\mathbf{q}_{i}\right)}\right)}{\Phi_{i}} \\
& =\frac{F_{i}\left(\mathbf{q}_{i}\right)}{\Phi_{i}} \frac{1}{q_{i k}} \varphi\left(\frac{q_{i k}}{A_{i}\left(\mathbf{q}_{i}\right)}\right),
\end{aligned}
$$

where the second equality follows from (72), and the last equation is a consequence of (69).

[^47]Moreover, it hods by (69) that

$$
\mathcal{P}_{i}\left(\mathbf{q}_{i}\right) F_{i}\left(\mathbf{q}_{i}\right)=\Phi_{i} .
$$

Then, taking the partial derivatives of the both hand sides with respect to $q_{i k}$, I obtain

$$
\begin{aligned}
& \frac{\partial \mathcal{P}_{i}(\cdot)}{\partial q_{i k}} F_{i}\left(\mathbf{q}_{i}\right)+\mathcal{P}_{i}\left(\mathbf{q}_{i}\right) \frac{\partial \mathcal{F}_{i}(\cdot)}{\partial q_{i k}}=0 \\
& \therefore \frac{\partial \mathcal{P}_{i}(\cdot)}{\partial q_{i k}}=-\frac{P_{i}}{Q_{i}} \frac{\partial \mathcal{F}_{i}(\cdot)}{\partial q_{i k}} .
\end{aligned}
$$

This identifies $\frac{\partial \mathcal{P}_{i}(\cdot)}{\partial q_{i k}}$ as a function of \mathbf{q}_{i}.
iii) For the realized values \mathbf{q}_{i}^{*}, if follows from (i) and (ii) of this lemma that

$$
\begin{aligned}
\frac{\partial F_{i}(\cdot)^{*}}{\partial q_{i k}} & =\frac{F_{i}\left(\mathbf{q}_{i}^{*}\right)}{\Phi_{i}} \frac{1}{q_{i k}^{*}} \varphi\left(\frac{q_{i k}^{*}}{A_{i}\left(\mathbf{q}_{i}^{*}\right)}\right) \\
& =\frac{Q_{i}^{*}}{P_{i}^{*} Q_{i}^{*}} \frac{1}{q_{i k}^{*}} r_{i k}^{*} \\
& =\frac{p_{i k}^{*}}{P_{i}^{*}},
\end{aligned}
$$

and, thus

$$
\begin{aligned}
\frac{\partial \mathcal{P}_{i}(\cdot)^{*}}{\partial q_{i k}} & =-\frac{P_{i}^{*}}{Q_{i}^{*}} p_{i k}^{*} \\
& =-\frac{p_{i k}^{*}}{Q_{i}^{*}} .
\end{aligned}
$$

This completes the proof.

C. 3 Recovering Comparative Statics

This section explores the identification of the comparative statics. I first identify the comparative statics up to the total derivative of wage using the profit-maximization and cost-minimization problems. Then I invoke the labor market clearing condition (22) to identify the policy impact on wage, leading to the full identification of those comparative statics that have been identified up to the change in wage in the previous stage (Appendices C.3.1 - C.3.2), which in turn is followed by the identification of changes in input demand for sectoral intermediate goods (Appendix C.3.3).

C.3.1 Profit Maximization

In each sector $i \in \mathbf{N}$, for the equilibrium wage W^{*}, the material price index $P_{i}^{M^{*}}$ and for each firm's optimal quantity $q_{i k}^{*}$, there exist a pair of labor and material inputs that satisfies the following one-step
profit maximization problem:

$$
\begin{gathered}
\left(\bar{\ell}_{i k}^{*}, \bar{m}_{i k}^{*}\right) \in \underset{\ell_{i k}, m_{i k}}{\arg \max }\left\{p_{i k}^{*} q_{i k}^{*}-\left(W^{*} \ell_{i k}+P_{i}^{M^{*}} m_{i k}\right)\right\} \\
\text { s.t. } q_{i k}^{*}=f_{i}\left(\ell_{i k}, m_{i k} ; z_{i k}\right) .
\end{gathered}
$$

The first order conditions with respect to labor and material inputs are given, respectively, by:

$$
\begin{align*}
& {\left[\ell_{i k}\right]:\left.m r_{i k}(\cdot)^{*} \frac{\partial f_{i}(\cdot)}{\partial \ell_{i k}}\right|_{\left(\ell_{i k}, m_{i k}\right)=\left(\bar{\ell}_{i k}^{*}, \bar{m}_{i k}^{*}\right)}=W^{*}} \tag{74}\\
& {\left[m_{i k}\right]:\left.m r_{i k}(\cdot)^{*} \frac{\partial f_{i}(\cdot)}{\partial m_{i k}}\right|_{\left(\ell_{i k}, m_{i k}\right)=\left(\bar{\ell}_{i k}^{*}, \bar{m}_{i k}^{*}\right)}=P_{i}^{M^{*}}} \tag{75}
\end{align*}
$$

where $m r_{i k}\left(\mathbf{q}_{i}\right)$ is the firm k 's marginal revenue function, and I denote $m r_{i k}(\cdot)^{*}:=m r_{i k}\left(\mathbf{q}_{i}^{*}\right)$.
Taking total derivatives of the both hand sides of (74) and (75) in terms of τ_{n} yields, respectively,

$$
\begin{align*}
& \left(\sum_{k^{\prime}=1}^{N_{i}} \frac{\partial m r_{i k}(\cdot)^{*}}{\partial q_{i k^{\prime}}} \frac{d q_{i k^{\prime}}^{*}}{d \tau_{n, n^{\prime}}}\right) \frac{\partial f_{i}(\cdot)^{*}}{\partial \ell_{i k}}+m r_{i k}^{*}(\cdot)\left(\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k}^{2}} \frac{d \bar{\ell}_{i k}^{*}}{d \tau_{n, n^{\prime}}}+\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} \partial m_{i k}} \frac{d \bar{m}_{i k}^{*}}{d \tau_{n, n^{\prime}}}\right)=\frac{d W^{*}}{d \tau_{n, n^{\prime}}} \tag{76}\\
& \left(\sum_{k^{\prime}=1}^{N_{i}} \frac{\partial m r_{i k}(\cdot)^{*}}{\partial q_{i k^{\prime}}} \frac{d q_{i k^{\prime}}^{*}}{d \tau_{n, n^{\prime}}}\right) \frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}}+m r_{i k}(\cdot)^{*}\left(\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} m_{i k}} \frac{d \bar{\ell}_{i k}^{*}}{d \tau_{n, n^{\prime}}}+\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial m_{i k}^{2}} \frac{d \bar{m}_{i k}^{*}}{d \tau_{n, n^{\prime}}}\right)=\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}, \tag{77}
\end{align*}
$$

where

$$
\frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}}=\frac{\partial f_{i}(\cdot)^{*}}{\partial \ell_{i k}} \frac{d \bar{\ell}_{i k}^{*}}{d \tau_{n, n^{\prime}}}+\frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}} \frac{d \bar{m}_{i k}^{*}}{d \tau_{n, n^{\prime}}} .
$$

Here, remember that firms only choose their output quantities through the profit maximization, while input decisions are made in a way that minimizes total cots. Thus the "optimal" labor $\overline{\ell_{i k}^{*}}$ and material inputs $\bar{m}_{i k}^{*}$ chosen above are not necessarily the same ones as actually chosen by the firm. Rather, $\bar{\ell}_{i k}^{*}$ and material inputs $\bar{m}_{i k}^{*}$ should be understood as a combination of inputs that only pins down the change in the firm's output quantity, whose corresponding production possibility frontier is in turn used to determine the optimal input choices in the subsequent cost minimization problem (see Section ??).

From (76) and (77), it follows that, in equilibrium,

$$
\begin{aligned}
& \left(\sum_{k^{\prime}=1}^{N_{i}} \frac{\partial m r_{i k}(\cdot)^{*}}{\partial q_{i k^{\prime}}} \frac{d q_{i k^{\prime}}^{*}}{d \tau_{n, n^{\prime}}}\right) \frac{\partial f_{i}(\cdot)^{*}}{\partial \ell_{i k}} \bar{\ell}_{i k}^{*}+m r_{i k}(\cdot)^{*}\left(\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k}^{2}} \bar{\ell}_{i k}^{*} \frac{d \bar{\ell}_{i k}^{*}}{d \tau_{n, n^{\prime}}}+\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} \partial m_{i k}} \bar{\ell}_{i k}^{*} \frac{d \bar{m}_{i k}^{*}}{d \tau_{n, n^{\prime}}}\right) \\
& +\left(\sum_{k^{\prime}=1}^{N_{i}} \frac{\partial m r_{i k}(\cdot)^{*}}{\partial q_{i k^{\prime}}} \frac{d q_{i k^{\prime}}^{*}}{d \tau_{n, n^{\prime}}}\right) \frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}} \bar{m}_{i k}^{*}+m r_{i k}(\cdot)^{*}\left(\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} m_{i k}} \bar{m}_{i k}^{*} \frac{d \bar{\ell}_{i k}^{*}}{d \tau_{n, n^{\prime}}}+\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial m_{i k}^{2}} \bar{m}_{i k}^{*} \frac{d \bar{m}_{i k}^{*}}{d \tau_{n, n^{\prime}}}\right) \\
& =\frac{d W^{*}}{d \tau_{n, n^{\prime}}} \bar{\ell}_{i k}^{*}+\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}} \bar{m}_{i k}^{*}
\end{aligned}
$$

$$
\begin{align*}
& \therefore\left(\sum_{k^{\prime}=1}^{N_{i}} \frac{\partial m r_{i k}(\cdot)^{*}}{\partial q_{i k^{\prime}}} \frac{d q_{i k^{\prime}}^{*}}{d \tau_{n, n^{\prime}}}\right)\left(\frac{\partial f_{i}(\cdot)^{*}}{\partial \ell_{i k}} \bar{\ell}_{i k}^{*}+\frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}} \bar{m}_{i k}^{*}\right) \\
&+m r_{i k}(\cdot)^{*}\left(\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k}^{2}} \bar{\ell}_{i k}^{*}+\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} \partial m_{i k}} \bar{m}_{i k}^{*}\right) \frac{d \bar{\ell}_{i k}^{*}}{d \tau_{n, n^{\prime}}}+m r_{i k}(\cdot)^{*}\left(\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} \partial m_{i k}} \bar{\ell}_{i k}^{*}+\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial m_{i k}^{2}} \bar{m}_{i k}^{*}\right) \frac{d \bar{m}_{i k}^{*}}{d \tau_{n, n^{\prime}}} \\
&=\frac{d W^{*}}{d \tau_{n, n^{\prime}}} \bar{\ell}_{i k}^{*}+\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}} \bar{m}_{i k}^{*} \\
& \therefore q_{i k}^{*} \sum_{k^{\prime}=1}^{N_{i}} \frac{\partial m r_{i k}(\cdot)^{*}}{\partial q_{i k^{\prime}}} \frac{d q_{i k^{\prime}}^{*}}{d \tau_{n, n^{\prime}}^{*}}=\frac{d W^{*}}{d \tau_{n, n^{\prime}}} \bar{\ell}_{i k}^{*}+\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}} \bar{m}_{i k}^{*} \\
& \therefore \sum_{k^{\prime}=1}^{N_{i}} \frac{\partial m r_{i k}(\cdot)^{*}}{\partial q_{i k^{\prime}}} \frac{d q_{i k^{\prime}}^{*}}{d \tau_{n, n^{\prime}}}=\frac{1}{q_{i k}^{*}}\left(\frac{d W^{*}}{d \tau_{n, n^{\prime}}} \bar{\ell}_{i k}^{*}+\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}} \bar{m}_{i k}^{*}\right) \tag{78}
\end{align*}
$$

where the third implication is a consequence of Assumption 3.5 (i). The expression (78) holds for each firm in the same sector, thereby constituting a system of N_{i} equations in N_{i} unknowns (i.e., total derivatives of the optimal quantities with respect to subsidy):

In order to ensure that this system can be solved for the total derivatives of quantity with respect to subsidy, I impose an assumption that the premultiplying term of the left-hand side is invertible.

Assumption C.6. For each sector $i \in \mathbf{N}$, the matrix

$$
\Lambda_{i, 1}:=\left[\begin{array}{cccc}
\frac{\partial m r_{i 1}(\cdot)^{*}}{\partial q_{i 1}} & \frac{\left.\partial m r_{i 1}(\cdot)\right)^{*}}{\partial q_{i 2}} & \ldots & \frac{\partial m r_{i 1}(\cdot)^{*}}{\partial q_{i N} N_{i}} \\
\frac{\partial m r_{i 2}(\cdot)^{*}}{\partial q_{i 1}} & \frac{\left.\partial m r_{22}(\cdot)\right)^{*}}{\partial q_{i 2}} & \ldots & \frac{\partial m r_{i 2}(\cdot)^{*}}{\partial q_{i i}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial m r_{i N_{i}}(\cdot)}{\partial q_{i 1}} & \frac{\partial m r_{i N_{i}}(\cdot)^{*}}{\partial q_{i 2}} & \ldots & \frac{\partial m r_{i N_{i}}(\cdot)^{*}}{\partial q_{i N_{i}}}
\end{array}\right]
$$

is nonsingular.
Assumption C. 6 requires that the column vectors of $\Lambda_{i, 1}$ are linearly independent. This assumption trivially holds in monopolistic competition as $\Lambda_{i, 1}$ simplifies to a diagonal matrix. The economic content of this assumption in the case of oligopolistic competitions directly pertains to firms' strategic complementarities.

Example C. 1 (Duopoly). For simplicity, consider a case of duopoly, wherein firm 1 and 2 are engaged in a competition over quantity. It generally holds that $\left|\frac{\partial m r_{i 1}(\cdot)^{*}}{\partial q_{i 1}}\right| \geq\left|\frac{\partial m r_{i 1}(\cdot)^{*}}{\partial q_{i 2}}\right|$. But, it is also true that $\left|\frac{\partial m r_{i 2}(\cdot) *}{\partial q_{i 1}}\right| \leq\left|\frac{\left.\partial m r_{i 2}(\cdot)\right)^{*}}{\partial q_{i 2}}\right|$. Hence there is no such a constant that makes the column vectors $\Lambda_{i, 1}$
linearly dependent. In this sense, Assumption C. 6 excludes a situation where the firm's own strategic complementarity is exactly the same as the competitor's.

Under Assumption C.6, the system of equations (79) can be solved for $\left\{\frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}}\right\}_{k=1}^{N_{i}}$:

$$
\left[\begin{array}{c}
\frac{d q_{i 1}^{*}}{d \tau_{n, n}^{*}} \\
\frac{d q_{i 2}^{n^{\prime}}}{d \tau_{n, n^{\prime}}} \\
\vdots \\
\frac{d q_{N_{i}}^{*}}{d \tau_{n, n^{\prime}}}
\end{array}\right]=\Lambda_{i, 1}^{-1} \Lambda_{i, 2}\left[\begin{array}{c}
\frac{d W^{*}}{d \tau_{n}} \\
\frac{d P}{d P_{i}^{*}} \\
d \tau_{n, n^{\prime}}
\end{array}\right] .
$$

In this expression, $\Lambda_{i, 1}^{-1}$ captures the strategic interactions between firms through changes in marginal revenues. Moreover, it can also be seen, from this expression, that $\left\{\frac{d q_{k k}^{*}}{d \tau_{n, n^{\prime}}}\right\}_{k=1}^{N_{i}}$ depends on the levels of firm's current production $\Lambda_{i, 2}$ as well as the responsiveness of the wage and material cost index.

Fact C.2. Suppose that Proposition C. 2 and Lemma C. 3 hold. Then, for each sector $i \in \mathbf{N}$, the matrix $\Lambda_{i, 1}^{-1} \Lambda_{i, 2}$ in (80) is identified.

Proof. First, $\left\{q_{i k}^{*}\right\}_{k=1}^{N_{i}}$ are identified by Proposition C.2. Next, it follows from Lemma C. 3 that $\left\{\frac{\partial m r_{i k}}{\partial q_{i k^{\prime}}^{*}}\right\}_{k, k^{\prime}}$ are identified. Hence, the matrix $\Lambda_{i, 1}^{-1} \Lambda_{i, 2}$ in (80) is identified, as desired.

Letting $\lambda_{i k, k^{\prime}}^{-1}$ be the $\left(k, k^{\prime}\right)$ entry of the matrix $\Lambda_{i, 1}^{-1}$, I can write

$$
\begin{align*}
\frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}} & =\left(\sum_{k^{\prime}=1}^{N_{i}} \lambda_{i k, k^{\prime}}^{-1} \frac{\bar{\ell}_{i k^{\prime}}^{*}}{q_{i k^{\prime}}^{*}}\right) \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\left(\sum_{k^{\prime}=1}^{N_{i}} \lambda_{i k, k^{\prime}}^{-1} \frac{\bar{m}_{i k^{\prime}}^{*}}{q_{i k^{\prime}}^{*}}\right) \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}} \\
& =\bar{\lambda}_{i k}^{L} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\bar{\lambda}_{i k}^{M} \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}, \tag{80}
\end{align*}
$$

where $\bar{\lambda}_{i k}^{L}:=\sum_{k^{\prime}=1}^{N_{i}} \lambda_{i k, k^{\prime}}^{-1} \frac{\bar{l}_{i k^{\prime}}^{*}}{q_{i k^{\prime}}^{*}}$ and $\bar{\lambda}_{i k}^{M}:=\sum_{k^{\prime}=1}^{N_{i}} \lambda_{i k, k^{\prime}}^{-1} \overline{\bar{m}}_{i k^{\prime}}^{*} \bar{q}_{i k^{\prime}}^{*}$ correspond to the k th element of the first and second column of the matrix $\Lambda_{i, 1}^{-1} \Lambda_{i, 2}$, respectively.

Note that $\bar{\lambda}_{i k}^{L}$ and $\bar{\lambda}_{i k}^{M}$, respectively, can be understood as a measure of the sensitivity (elasticity) of the sector's overall strategic complementarity to a change in firm k 's output quantity, with the weight assigned to the ratio between output and input quantities. ${ }^{111}$ These measures capture the extent of influence that each firm exerts in strategic interactions. Intuitively, (80) states that the policy shocks coming through the changes in the labor wage and material input cost affect the firm's quantity adjustment decision in proportion to the "market share" encoded in the weighted elasticities $\bar{\lambda}_{i k}^{L}$ and $\bar{\lambda}_{i k}^{M}$ of the sectoral strategic complementarity. I call these measures the indices of firm's contribution to sectoral strategic

[^48]complementarity. These indices tell us the extent to which the market competition is affected by the change in firm k 's quantity, ${ }^{112}$ and are similar in spirit to the index of competitor price changes of Amiti et al. (2019). While their index compares the firm's contribution to the rest of the market, my indices $\bar{\lambda}_{i k}^{L}$ and $\bar{\lambda}_{i k}^{M}$ compares the rest of the market to the entire market, backing out the firm's share. This observation is best illustrated in the example of duopoly (see Example ??), and becomes acute in the case of monopolistic competitions.

Example C. 2 (Monopolistic Competition). I consider the same setup as Example ??, but depart by assuming that both firms are monopolistic. In this case,

$$
\Lambda_{i, 1}^{-1}=\left[\begin{array}{cc}
\left(\frac{\partial m r_{i 1}(\cdot)^{*}}{\partial q_{i 1}}\right)^{-1} & 0 \\
0 & \left(\frac{\partial m r_{i 2}(\cdot)^{*}}{\partial q_{i 2}}\right)^{-1}
\end{array}\right] .
$$

Then two measures of the firm 1's contribution to the overall sectoral strategic complementarity are given by $\bar{\lambda}_{i 1}^{L}=\left(\frac{\partial m r_{i 1}(\cdot)^{*}}{\partial q_{i 1}}\right)^{-1} \frac{\ell_{i 1}^{*}}{q_{i 1}^{*}}$ and $\bar{\lambda}_{i 1}^{M}=\left(\frac{\partial m r_{i 1}(\cdot)^{*}}{\partial q_{i 1}}\right)^{-1} \frac{m_{i 1}^{*}}{q_{i 1}^{*}}$, both of which are typically negative. ${ }^{113}$ Provided that both $\bar{\lambda}_{i 1}^{L}$ and $\bar{\lambda}_{i 1}^{M}$ are negative, (80) implies that when the wage and material cost index become higher in reaction to a policy change, firm 1 decreases its output quantity. An analogous argument applies to firm 2. When the firms are oligopolistic as in Example ??, the signs of $\bar{\lambda}_{i 1}^{L}$ and $\bar{\lambda}_{i 1}^{M}$ are ambiguous because they are determined in relation to the strategic complementarities.

Totally differentiating (68) yields

$$
\begin{equation*}
\frac{d P_{i}^{*}}{d \tau_{n, n^{\prime}}}=\sum_{k^{\prime}=1}^{N_{i}} \frac{\partial \mathcal{P}_{i}(\cdot)^{*}}{\partial q_{i k^{\prime}}} \frac{d q_{i k^{\prime}}^{*}}{d \tau_{n, n^{\prime}}} . \tag{81}
\end{equation*}
$$

Upon substituting (80) into (81), I can write

$$
\begin{align*}
\frac{d P_{i}^{*}}{d \tau_{n, n^{\prime}}} & =\sum_{k^{\prime}=1}^{N_{i}} \frac{\partial \mathcal{P}_{i}(\cdot)^{*}}{\partial q_{i k^{\prime}}}\left(\bar{\lambda}_{i k^{\prime}}^{L} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\bar{\lambda}_{i k^{\prime}}^{M} \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}\right) \\
& =\left(\sum_{k^{\prime}=1}^{N_{i}} \frac{\partial \mathcal{P}_{i}(\cdot)^{*}}{\partial q_{i k^{\prime}}} \bar{\lambda}_{i k^{\prime}}^{L}\right) \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\left(\sum_{k^{\prime}=1}^{N_{i}} \frac{\partial \mathcal{P}_{i}(\cdot)^{*}}{\partial q_{i k^{\prime}}} \bar{\lambda}_{i k^{\prime}}^{M}\right) \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}} \\
& =\bar{\lambda}_{i \cdot}^{L} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\bar{\lambda}_{i \cdot}^{M} \cdot \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}} \tag{82}
\end{align*}
$$

where $\bar{\lambda}_{i}^{L}:=\sum_{k^{\prime}=1}^{N_{i}} \frac{\left.\partial \mathcal{P}_{i}(\cdot)\right)^{*}}{\partial q_{i k^{\prime}}} \bar{\lambda}_{i k^{\prime}}^{L}$ and $\bar{\lambda}_{i .}^{M}:=\sum_{k^{\prime}=1}^{N_{i}} \frac{\partial \mathcal{P}_{i}(\cdot){ }^{*}}{\partial q_{i k^{\prime}}} \bar{\lambda}_{i k^{\prime}}^{M}$. These are a weighted sum of the elasticities of sectoral price index with respect to firms' quantities, with the weight assigned to a firm's index of strategic complementarity in that sector. From the expression (82), $\bar{\lambda}_{i}^{L}$. and $\bar{\lambda}_{i}^{M}$. can be interpreted as representing a pass-through of a change in the wage and material input cost to the sectoral price index, respectively.

[^49]Example C. 3 (Monopolistic Competition). Continuing Example C. 2 and assuming that $\bar{\lambda}_{i 1}^{L}, \bar{\lambda}_{i 2}^{L}, \bar{\lambda}_{i 1}^{M}$ and $\bar{\lambda}_{i 2}^{M}$ have all turned out to be negative, I can proceed to calculate $\bar{\lambda}_{i}^{L}$. and $\bar{\lambda}_{i}^{M}$. Due to the law of demand (i.e., $\frac{\partial \mathcal{P}_{i}(\cdot)^{*}}{\partial q_{i k^{\prime}}}<0$ for all $k^{\prime} \in \mathbf{N}_{i}$), these are both positive. In light of (82), this in turn implies a higher sectoral price index in response to higher wage and material cost index, which accords with a lower output quantity seen in Example C.2.

Fact C.3. Suppose that Proposition C. 2 and Lemma C. 4 hold. Then, for each sector $i \in \mathbf{N}, \bar{\lambda}{ }_{i}^{L}$. and $\bar{\lambda}_{i}^{M}$. are identified.

Proof. First, \mathbf{q}_{i}^{*} and \mathbf{p}_{i}^{*} are identified by Proposition C.2. Next, it can immediately be seen from Fact C. 2 that $\lambda_{i k, 1}$ and $\lambda_{i k, 2}$ are identified. Moreover, in view of Lemma C.4, $\frac{\partial \mathcal{P}_{i}(\cdot)^{*}}{\partial q_{i k}}$ can be expressed in terms of \mathbf{p}_{i}^{*} and Q_{i}^{*}. Hence, $\bar{\lambda}_{i}^{L}$. and $\bar{\lambda}_{i}^{M}$. are identified.

Meanwhile, taking total derivatives of (54), it holds that for a given n and n^{\prime},

$$
\begin{equation*}
\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}=-\sum_{j=1}^{N} \frac{\gamma_{i, j}}{1-\tau_{i, j}} P_{i}^{M^{*}} \mathbb{1}_{\left\{i=n, j=n^{\prime}\right\}}+\sum_{j=1}^{N} \gamma_{i, j} \frac{P_{i}^{M^{*}}}{P_{j}^{*}} \frac{d P_{j}^{*}}{d \tau_{n, n^{\prime}}}, \tag{83}
\end{equation*}
$$

where $\mathbb{1}_{\left\{i=n, j=n^{\prime}\right\}}$ takes one if $i=n$ and $j=n^{\prime}$, and zero otherwise.
Substituting (82) for $\left\{\frac{d P_{j}^{*}}{d \tau_{n, n^{\prime}}}\right\}_{j=1}^{N}$ into (83), I arrive at

$$
\begin{equation*}
\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}=-\sum_{j=1}^{N} \frac{\gamma_{i, j}}{1-\tau_{i, j}} P_{i}^{M^{*}} \mathbb{1}_{\left\{i=n, j=n^{\prime}\right\}}+\left(\sum_{j=1}^{N} \gamma_{i, j} \frac{P_{i}^{M^{*}}}{P_{j}^{*}} \bar{\lambda}_{j}^{L}\right) \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\left(\sum_{j=1}^{N} \gamma_{i, j} \frac{P_{i}^{M^{*}}}{P_{j}^{*}} \bar{\lambda}_{j}^{M}\right) \frac{d P_{j}^{M^{*}}}{d \tau_{n, n^{\prime}}} . \tag{84}
\end{equation*}
$$

Denoting $\Gamma_{1}:=\left[\gamma_{i, j} \frac{P_{i}^{M^{*}}}{P_{j}^{*}} \bar{\lambda}_{j}^{L} \cdot\right]_{i, j=1}^{N}$ and $\Gamma_{2}:=\left[\gamma_{i, j} \frac{P_{i}^{M^{*}}}{P_{j}^{*}} \bar{\lambda}_{j}^{M} \cdot\right]_{i, j=1}^{N}$, and letting $\iota:=[1,1, \ldots, 1]^{\prime}$ be a $N \times 1$ vector of ones, I stack (84) over sectors to obtain the following system of equations:

$$
\begin{align*}
& {\left[\begin{array}{c}
\frac{d P_{1}^{M^{*}}}{d \tau_{n, n^{\prime}}} \\
\vdots \\
\frac{d P_{N}^{*}}{d \tau_{n, n^{\prime}}}
\end{array}\right]=-\left[\begin{array}{c}
\sum_{j=1}^{N} \frac{\gamma_{1, j}}{1-\tau_{1, j}} P_{1}^{M^{*}} \mathbb{1}_{\left\{1=n, j=n^{\prime}\right\}} \\
\vdots \\
\sum_{j=1}^{N} \frac{\gamma_{N, j}}{1-\tau_{N, j}} P_{N}^{M^{*}} \mathbb{1}_{\left\{N=n, j=n^{\prime}\right\}}
\end{array}\right]+\Gamma_{1} \iota \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\Gamma_{2}\left[\begin{array}{c}
\frac{d P_{1}^{M^{*}}}{d \tau_{n, n^{\prime}}} \\
\vdots \\
\frac{d P^{N^{*}}}{d \tau_{n, n^{\prime}}}
\end{array}\right]} \\
& \therefore\left(I-\Gamma_{2}\right)\left[\begin{array}{c}
\frac{d P_{1}^{M^{*}}}{d \tau_{n, n^{\prime}}} \\
\vdots \\
\frac{d P_{N}^{M^{*}}}{d \tau_{n, n^{\prime}}}
\end{array}\right]=-\left[\begin{array}{c}
\sum_{j=1}^{N} \frac{\gamma_{1, j}}{1-\tau_{1, j}} P_{1}^{M^{*}} \mathbb{1}_{\left\{1=n, j=n^{\prime}\right\}} \\
\vdots \\
\sum_{j=1}^{N} \frac{\gamma_{N, j}}{1-\tau_{N, j}} P_{N}^{M^{*}} \mathbb{1}_{\left\{N=n, j=n^{\prime}\right\}}
\end{array}\right]+\Gamma_{1} \iota \frac{d W^{*}}{d \tau_{n, n^{\prime}}} \tag{85}
\end{align*}
$$

where I represents an $N \times N$ identity matrix.
Fact C.4. The matrices Γ_{1} and Γ_{2} in (85) is identified.
Proof. In view of Fact B.5, $\left\{\gamma_{i, j}\right\}_{i, j}$ and $\left\{P_{i}^{M^{*}}\right\}_{i=1}^{N}$ are identified from the observables. Moreover, $\left\{\bar{\lambda}_{j}^{L}\right\}_{j=1}^{N}$ and $\left\{\bar{\lambda}_{j}^{M} .\right\}_{j=1}^{N}$ are identified due to Fact C.3. Hence, both Γ_{1} and Γ_{2} in (85) are identified.

To uniquely solve (85) for $\left\{\frac{d P_{j}^{M^{*}}}{d \tau_{n, n^{\prime}}}\right\}_{j=1}^{N}$, I need an additional regularity condition.

Assumption C.7. The matrix $\left(I-\Gamma_{2}\right)$ is nonsingular.
This assumption guarantees that $\left(I-\Gamma_{2}\right)$ is invertible. Under Assumption C.7, it follows from (85) that

$$
\left[\begin{array}{c}
\frac{d P_{1}^{M^{*}}}{d \tau_{n, n^{\prime}}} \tag{86}\\
\vdots \\
\frac{d P^{M^{*}}}{d \tau_{n, n^{\prime}}}
\end{array}\right]=\left(I-\Gamma_{2}\right)^{-1}\left[\begin{array}{c}
-\sum_{j=1}^{N} \frac{\gamma_{1, j}}{1-\tau_{1, j}} P_{1}^{M^{*}} \mathbb{1}_{\left\{1=n, j=n^{\prime}\right\}} \\
\vdots \\
-\sum_{j=1}^{N} \frac{\gamma_{N, j}}{1-\tau_{N, j}} P_{N}^{M^{*}} \mathbb{1}_{\left\{N=n, j=n^{\prime}\right\}}
\end{array}\right]+\left(I-\Gamma_{2}\right)^{-1} \Gamma_{1} \iota \frac{d W^{*}}{d \tau_{n, n^{\prime}}} .
$$

Observe here that Γ_{2} is a version of the adjacency matrix capturing the input-output linkages among sectors (see Fact B.5). Hence, $\left(I-\Gamma_{2}\right)^{-1}$ can be conceived as a type of the Leontief inverse matrix, augmented by the source sector's strategic interactions (i.e., market distortion). For some $i \neq n$, the (i, n) entry of this strategic-complementarity-adjusted Leontief inverse can be written as a geometric sum:

$$
\begin{equation*}
\gamma_{i, n} \frac{P_{i}^{M^{*}}}{P_{n}^{*}} \bar{\lambda}_{n \cdot}^{M}+\sum_{j=1}^{N} \gamma_{i, j} \gamma_{j, n} \frac{P_{i}^{M^{*}}}{P_{j}^{*}} \frac{P_{j}^{M^{*}}}{P_{n}^{*}} \bar{\lambda}_{j^{\prime},,}^{M} \bar{\lambda}_{n}^{M}+\sum_{j=1}^{N} \sum_{j^{\prime}=1}^{N} \gamma_{i, j} \gamma_{j, j^{\prime}} \gamma_{j^{\prime}, n} \frac{P_{i}^{M^{*}}}{P_{j}^{*}} \frac{P_{j}^{M^{*}}}{P_{j^{\prime}}^{*}} \frac{P_{j^{\prime}}^{M^{*}}}{P_{n}^{*}} \bar{\lambda}_{j}^{M} \cdot \bar{\lambda}_{j^{\prime} \cdot}^{M} \bar{\lambda}_{n}^{M}+\ldots \tag{87}
\end{equation*}
$$

This infinite sum expression embodies the so called "strategic complementarities" in firm's price setting.(e.g., Nakamura and Steinsson 2010; La'O and Tahbaz-Salehi 2022). ${ }^{114}$ To gain some intuition for this, suppose that sector i uses sector n 's $(n \neq i)$ intermediate good directly and indirectly along the production network. For the sake of brevity, assume in addition that $\bar{\lambda}_{j}$, >0 for all $j \in \mathbf{N}$. When sector n is subsidized, the reduced input cost stimulates the production in that sector, leading to a lower sectoral output price index of sector n according to (82). The pass-through ratio is given by $\bar{\lambda}_{n}^{M}$. This change in the sector n 's output price index affects the cost index of sector i through multiple channels. The first term of (87) stands for the first-order spillover effect: the lower price index of sector n directly reduces the sector i 's input cost. The second term captures the second-order spillover effect coming via a third sector j. The output price index of sector j decreases as firms in sector j can produce more of their goods by taking advantage of cheaper input costs. This effect is encapsulated in $\bar{\lambda}_{j}$. This chain of reductions in input cost takes place along the network. I call this comovement of sectoral cost indices the macro complementarities.

In general, the sign and magnitude of the macro complementarities are ambiguous, because they are mediated by the source sector firm's strategic complementarities, encoded in $\bar{\lambda}_{j,}$, which I call the micro complementarities.

Example C.4. Consider an economy consisting on three sectors, i.e., sector 1, 2 and 3. Suppose that the overall strategic complementarity in sector 2 is such that $\bar{\lambda}_{2}^{M} \cdot<0$, and that in sector 3 is $\bar{\lambda}_{3 .}^{M}>0$. Sector 1 purchases input goods from sector 3 directly and indirectly through sector 2. Assume that sector 3 is subsidized. In this case, the corresponding expression for (87) from the sector 1's viewpoint is given

[^50]by
$$
\gamma_{1,3} \frac{P_{1}^{M^{*}}}{P_{3}^{*}} \bar{\lambda}_{3 .}^{M}+\gamma_{1,2} \gamma_{2,3} \frac{P_{1}^{M^{*}}}{P_{2}^{*}} \frac{P_{2}^{M^{*}}}{P_{3}^{*}} \bar{\lambda}_{2}^{M} \cdot \bar{\lambda}_{3}^{M} .
$$

The first term represents the first-order spillover effect from the subsidized sector. This induces a positive correlation, as discussed above. The second term dictates the second-order spillover effect coming through sector 2. On the one hand, the input cost for sector 2 decreases owing to lower sectoral intermediate good from sector 3. The sectoral price index of sector 2, however, will go up because the competition in sector 2 is such that $\bar{\lambda}_{2}^{M} .<0$. (This is especially the case when the firms' products are strategic complement of one another.) Thus, the presence of sector 2, through a higher price index of sector 2's intermediate good, partially undermines or may even revert the positive spillover effect from the subsidized sector.

Remark C.3. The literature on New Keynesian models, such as Nakamura and Steinsson (2010) and La'O and Tahbaz-Salehi (2022) use the strategic complementarities in firm's price setting to refer to the relationship between sectoral output indices. A similar observation can be obtained for sectoral output indices by substituting (83) into (82) to cancel $\left\{\frac{d P_{j}^{*}}{d \tau_{n, n^{\prime}}}\right\}_{j=1}^{N}$. The intuition retains the same as described above.

Lemma C. 5 (Identification of $\left.\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}\right)$. Suppose that Assumptions C. 6 and C. 7 hold. Then, the value of $\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}$ is uniquely identified up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$.

Proof. In view of Fact B.5, $\left\{\gamma_{i, j}\right\}_{i, j}$ and $\left\{P_{i}^{M^{*}}\right\}_{i=1}^{N}$ in (86) are identified from the observables. Moreover, by Fact C.4, Γ_{1} and Γ_{2} are also identified from the observables. Thus I can uniquely identify $\left\{\frac{d P_{i}^{M *}}{d \tau_{n, n^{\prime}}}\right\}_{i=1}^{N}$ up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$ through (86), as claimed.

Lemma C. 6 (Identification of $\frac{d P_{i}^{*}}{d \tau_{n, n^{\prime}}}$). Suppose that the assumptions required in Lemma C. 5 are satisfied. Then, the value of $\frac{d P_{i}^{*}}{d \tau_{n, n^{\prime}}}$ is identified up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$.

Proof. In light of Lemma C.5, I identify $\left\{\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}\right\}_{i=1}^{N}$ up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$. Substituting these into (82), I can identify $\left\{\frac{d P_{i}^{*}}{d \tau_{n, n^{\prime}}}\right\}_{i=1}^{N}$ up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$ as

$$
\frac{d P_{i}^{*}}{d \tau_{n, n^{\prime}}}=\bar{\lambda}_{i}^{L} \cdot \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\bar{\lambda}_{i}^{M} \cdot \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}
$$

where the identification of $\bar{\lambda}_{i}^{L}$. and $\bar{\lambda}_{i}^{M}$. follows from Fact C.3. This proves the claim.
Lemma C. 7 (Identification of $\frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}}$). Suppose that the assumptions required in Proposition C. 2 and Lemma C. 3 are satisfied. Assume moreover that Assumptions C. 6 and C. 7 hold. Then, the value of $\frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}}$ is identified up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$.

Proof. In (80), $\Lambda_{i, 1}^{-1} \Lambda_{i, 2}$ is identified by Fact C.2, and $\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}$ is identified up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$ by Lemma C.5. Thus, I can identify the value of $\frac{d q_{k k}^{*}}{d \tau_{n, n^{\prime}}}$ up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$, completing the proof.

C.3.2 Cost Minimization 1: Input Decision

The increment (or decrement) of the output quantity in reaction to the policy change, $\frac{d q_{i k}^{*}}{d \tau_{n}}$, pins down a new production possibility frontier, along which the quantities of labor and material inputs adjust.

Firm k 's cost minimization problem in sector i is formulated as: for given W, P_{i}^{M} and $q_{i k}^{*}$,

$$
\begin{aligned}
\left(\ell_{i k}^{*}, m_{i k}^{*}\right) \in & \underset{\ell_{i k}, m_{i k}}{\arg \min } W \ell_{i k}+P_{i}^{M} m_{i k} \\
& \text { s.t. } \quad f_{i}\left(\ell_{i k}, m_{i k} ; z_{i k}\right) \geq q_{i k}^{*} .
\end{aligned}
$$

The associated Lagrange function is

$$
\mathcal{L}_{i}\left(\ell_{i k}, m_{i k}, \xi_{i k}\right):=W \ell_{i k}+P_{i}^{M} m_{i k}-\xi_{i k}\left(f_{i}\left(\ell_{i k}, m_{i k} ; z_{i k}\right)-q_{i k}^{*}\right) .
$$

In equilibrium, the first order conditions are satisfied at $\left(\ell_{i k}, m_{i k}\right)=\left(\ell_{i k}^{*}, m_{i k}^{*}\right)$:

$$
\begin{aligned}
& {\left[\ell_{i k}\right]: W^{*}=\xi_{i k}^{*} \frac{\partial f_{i}(\cdot)^{*}}{\partial \ell_{i k}}} \\
& {\left[m_{i k}\right]: P_{i}^{M^{*}}=\xi_{i k}^{*} \frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}}} \\
& {\left[\xi_{i k}\right]: f_{i}\left(\ell_{i k}^{*}, m_{i k}^{*} ; z_{i k}\right)=q_{i k}^{*},}
\end{aligned}
$$

where $\xi_{i k}^{*}$ is the marginal cost of production at the given quantity $q_{i k}^{*}$. Note that under Assumption 3.5 (i), $\xi_{i k}^{*}$ equals the average cost: i.e., $\xi_{i k}^{*}=\frac{T C_{i k}^{*}}{q_{i k}^{*}}$ where $T C_{i k}^{*}:=\left.T C_{i k}\left(W, P_{i}^{M}, q_{i k}\right)\right|_{\left(W, P_{i}^{M}, q_{i k}\right)=\left(W^{*}, P_{i}^{M^{*}}, q_{i k}^{*}\right)}$ with $T C_{i k}(\cdot)$ denoting, with a slight abuse of notation, the firm's total cost function. (see also Fact C.1).

Fact C. 5 (Identification of $\lambda_{i k}^{*}$). Suppose that Proposition C. 2 holds. Then $\xi_{i k}^{*}$ is identified.
Proof. Applying Proposition C.2, $q_{i k}^{*}$ is identified. Since $T C_{i k}^{*}$ is directly observed in data, I can thus identify $\xi_{i k}^{*}$, as desired.

Remark C.4. Two sets of "optimal" labor and material inputs $\left(\bar{\ell}_{i k}^{*}, \bar{m}_{i k}^{*}\right)$ and $\left(\ell_{i k}^{*}, m_{i k}^{*}\right)$ need to be distinguished. They reside on the same production possibility frontier, but do not necessarily coincide. It is the latter that minimizes the total cost of producing $q_{i k}^{*}$.

Totally differentiating the first order conditions, one obtains

$$
\begin{align*}
& \frac{d W^{*}}{d \tau_{n, n^{\prime}}}=\frac{d \xi_{i k}^{*}}{d \tau_{n, n^{\prime}}} \frac{\partial f_{i}(\cdot)^{*}}{\partial \ell_{i k}}+\xi_{i k}^{*}\left(\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k}^{2}} \frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}}+\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} \partial m_{i k}} \frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}}\right) \tag{88}\\
& \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}=\frac{d \xi_{i k}^{*}}{d \tau_{n, n^{\prime}}} \frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}}+\xi_{i k}^{*}\left(\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} m_{i k}} \frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}}+\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial m_{i k}^{2}} \frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}}\right) \tag{89}\\
& \frac{\partial f_{i}(\cdot)^{*}}{\partial \ell_{i k}} \frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}}+\frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}} \frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}}=\frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}} . \tag{90}
\end{align*}
$$

Observe here that

$$
\begin{align*}
\frac{d \xi_{i k}^{*}}{d \tau_{n, n^{\prime}}} & =\frac{d\left(T C_{i k}^{*} / q_{i k}^{*}\right)}{d \tau_{n, n^{\prime}}^{*}} \\
& =\frac{1}{q_{i k}^{*}} \frac{d T C_{i k}^{*}}{d q_{i k}^{*}}-T C_{i k} \frac{1}{\left(q_{i k}^{*}\right)^{2}} \frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}} \\
& =\frac{1}{q_{i k}^{*}}\left(\frac{\partial T C_{i k}(\cdot)^{*}}{\partial W} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\frac{\partial T C_{i k}(\cdot)^{*}}{\partial P_{i}^{M}} \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}+\frac{\partial T C_{i k}(\cdot)^{*}}{\partial q_{i k}} \frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}}\right)-\frac{1}{q_{i k}^{*}} \frac{T C_{i k}^{*}}{q_{i k}^{*}} \frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}} \\
& =\frac{1}{q_{i k}^{*}}\left(\ell_{i k}^{*} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+m_{i k}^{*} \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}+\frac{\partial T C_{i k}(\cdot)^{*}}{\partial q_{i k}} \frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}}\right)-\frac{1}{q_{i k}^{*}} \frac{T C_{i k}^{*}}{q_{i k}^{*}} \frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}} \\
& =\frac{1}{q_{i k}^{*}}\left(\ell_{i k}^{*} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+m_{i k}^{*} \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}+\xi_{i k}^{*} \frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}}\right)-\frac{1}{q_{i k}^{*}} \xi_{i k}^{*} \frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}} \\
& =\frac{\ell_{i k}^{*}}{q_{i k}^{*}} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\frac{m_{i k}^{*}}{q_{i k}^{*}} \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}} . \tag{91}
\end{align*}
$$

where the fourth equality is due to the Shephard lemma, and the fifth one follows from the fact that under Assumption 3.5 (i), the marginal cost equals average cost.

From (88) and (91),

$$
\begin{align*}
& \frac{d W^{*}}{d \tau_{n, n^{\prime}}}=\left(\frac{\ell_{i k}^{*}}{q_{i k}^{*}} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\frac{m_{i k}^{*}}{q_{i k}^{*}} \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}\right) \frac{\partial f_{i}(\cdot)^{*}}{\partial \ell_{i k}}+\xi_{i k}^{*}\left(\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k}^{2}} \frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}}+\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} \partial m_{i k}} \frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}}\right) \\
& \therefore \xi_{i k}^{*} \frac{\partial_{i}(\cdot)^{*}}{\partial \ell_{i k}^{2}} \frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}}+\xi_{i k}^{*} \frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} \partial m_{i k}} \frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}^{*}}=\left(1-\frac{\ell_{i k}^{*}}{q_{i k}^{*}} \frac{\partial f_{i}(\cdot)^{*}}{\partial \ell_{i k}}\right) \frac{d W^{*}}{d \tau_{n, n^{\prime}}}-\frac{m_{i k}^{*}}{q_{i k}^{*}} \frac{\partial f_{i}(\cdot)^{*}}{\partial \ell_{i k}} \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}} . \tag{92}
\end{align*}
$$

From (89) and (91),

$$
\begin{align*}
& \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}=\left(\frac{\ell_{i k}^{*}}{q_{i k}^{*}} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\frac{m_{i k}^{*}}{q_{i k}^{*}} \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}\right) \frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}}+\xi_{i k}^{*}\left(\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} m_{i k}} \frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}}+\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial m_{i k}^{2}} \frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}}\right) \\
& \therefore \xi_{i k}^{*} \frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} \partial m_{i k}} \frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}}+\xi_{i k}^{*} \frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial m_{i k}^{2}} \frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}}=-\frac{\ell_{i k}^{*}}{q_{i k}^{*}} \frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+\left(1-\frac{m_{i k}^{*}}{q_{i k}^{*}} \frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}}\right) \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}} . \tag{93}
\end{align*}
$$

The set of equations (90), (92) and (93), coupled with (80), can be summarized into a matrix form:

Notice that under Assumption 3.5 (i), (92) and (93) are essentially identical. Hence, the system of equations (94) simplifies to:

$$
\left[\begin{array}{cc}
\xi_{i k}^{*} \frac{\left.\partial^{2} f_{i}(\cdot)\right)^{*}}{\partial \ell_{k}^{2}} & \xi_{i k}^{*} \frac{\partial^{2} f_{i}(\cdot)^{*}}{\frac{\partial \ell_{i k} \partial m_{i k}}{\partial \ell_{i k}}} \tag{95}\\
\frac{\partial f_{i}(\cdot)}{\partial m_{i k}^{*}}
\end{array}\right]\left[\begin{array}{c}
\frac{d \ell_{i k}^{*}}{d \tau_{n}} \\
\frac{d m_{i k}}{d \tau_{n}}
\end{array}\right]=\left[\begin{array}{cc}
1-\frac{\ell_{i k}^{*}}{q_{i k}^{*}} \frac{\partial f_{i}(\cdot)^{*}}{\partial \ell_{i k}} & -\frac{m_{i k}^{*}}{q_{i k}} \frac{\partial f_{i}(\cdot)^{*}}{q_{i k}} \lambda_{i k} \\
\lambda_{i k} & \lambda_{i k}
\end{array}\right]\left[\begin{array}{l}
\frac{d W^{*}}{d \tau_{n, n^{\prime}}} \\
\frac{d P_{i}^{1 M^{*}}}{d \tau_{n, n^{\prime}}}
\end{array}\right]
$$

It is immediate to show that (95) can be solved for $\frac{d \epsilon_{i k}^{*}}{d \tau_{n}}$ and $\frac{d m_{i k}^{*}}{d \tau_{n}}$ as soon as acknowledging the
following fact.
Fact C.6. Suppose that Assumption 3.5 holds. Then, the matrix

$$
\left[\begin{array}{cc}
\xi_{i k}^{*} \frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \lambda_{i k}^{*}} & \xi_{i k}^{*} \frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} \partial m_{i k}} \\
\frac{\partial f_{i}(\cdot)^{*}}{\partial \partial_{i k}} & \frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}}
\end{array}\right]
$$

is nonsingular, i.e., invertible.
Proof. By Assumption 3.5 (i), it holds that for each firm k, traced by $z_{i k} \in \mathscr{Z}_{i}$,

$$
\frac{\partial f_{i}(\cdot)}{\partial \ell_{i k}} \ell_{i k}+\frac{\partial f_{i}(\cdot)}{\partial m_{i k}} m_{i k}=q_{i k}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} f_{i}(\cdot)}{\partial \ell_{i k}^{2}} \ell_{i k}+\frac{\partial^{2} f_{i}(\cdot)}{\partial \ell_{i k} \partial m_{i k}} m_{i k}=0 \tag{96}
\end{equation*}
$$

for any $\left(q_{i k}, \ell_{i k}, m_{i k}\right) \in\left\{(q, \ell, m) \in \mathscr{S}_{i} \times \mathscr{L}_{i} \times \mathscr{M}_{i} \mid q=f_{i}\left(\ell, m, z_{i k}\right)\right\}$.
Then the determinant of the matrix in question is given by

$$
\begin{aligned}
& =-\xi_{i k}^{*} \frac{m_{i k}^{*}}{\ell_{i k}^{*}} \frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}} \frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} \partial \ell_{i k}}-\xi_{i k}^{*}\left(\frac{q_{i k}^{*}}{\ell_{i k}^{*}}-\frac{m_{i k}^{*}}{\ell_{i k}^{*}} \frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}}\right) \frac{\partial f_{i}^{2}(\cdot)^{*}}{\partial \ell_{i k} \partial m_{i k}} \\
& =-\xi_{i k}^{*} \frac{q_{i k}^{*}}{\ell_{i k}^{*}} \frac{\partial f_{i}^{2}(\cdot)^{*}}{\partial \ell_{i k} \partial m_{i k}} \\
& <0,
\end{aligned}
$$

where the last strict inequality is a consequence of Assumptions 3.5. This means that the matrix is nonsingular, as claimed.

In light of Fact C.6, the system of equations (95) can be uniquely solved for $\frac{d \mathcal{C}_{i k}^{*}}{d \tau_{n}}$ and $\frac{d m_{i k}^{*}}{d \tau_{n}}$. Towards the identification of $\frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}}$ and $\frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}}$, I need to recover the first- and second-order partial derivatives of the firm-level production function. my approach heavily draws from Gandhi et al. (2019), and exploits the Hicks-neutral productivity of the firm-level production function as assumed in (13). For the ease of reference, this is summarized below.

Assumption C. 8 (Hicks-neutral Productivity Shocks). For each $i \in \mathbf{N}$ and for each $k \in \mathbf{N}_{i}$, the firmlevel productivity shifter $z_{i k}$ is Hicks-neutral.

The detail of the identification argument is relegated to Appendix C.4. Provided that the first- and second-order derivatives of the firm-level production functions are recovered, I are ready to identify the changes in labor and material inputs in response to changes in subsidies.

Lemma C. 8 (Identification of $\frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}}$ and $\frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}}$. Suppose that the assumptions required in Lemma C. 7 are satisfied. Assume moreover that Assumption C. 8 holds. Then, the values of $\frac{d \mathcal{C}_{i k}^{*}}{d \tau_{n}}$ and $\frac{d m_{i k}^{*}}{d \tau_{n}}$ are uniquely identified up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$.

Proof. Using Fact C.6, I can write (95) uniquely as

First, $q_{i k}^{*}$ and $\xi_{i k}^{*}$ are identified by Proposition C. 2 and Fact C.5, respectively. Next, the partial derivatives of the production function are identified by Lemma C. 11 in Appendix C.4. Finally, the total derivatives $\frac{d P_{i}^{M}}{d \tau_{n, n^{\prime}}}$ and $\frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}}$ are identified up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$ through Lemmas C. 5 and C.7, respectively. Hence, I also can uniquely identify $\frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}}$ and $\frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}}$ up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$, as desired.

Remark C.5. It is worth noticing that (97) can be decomposed into two terms as follows:

The leading three terms jointly account for the responsiveness of the firm's labor and material input decisions to the changes in wage and the cost index due to a policy shift, which are given by the last term. The former can be identified and thus estimated independently the latter. That is, once the former is obtained, (97) can be viewed as a "reduced-form" relationship between the changes of labor and material inputs and the those of wage and material cost index.

The comparative statics in this section so far have been identified up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$. Next, to attain the full identification of the comparative statics, I aim to identify $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$ from the observables by making use of the labor market clearing condition (22). First, let

$$
D_{i k}=\left[\begin{array}{ll}
d_{i k, 11} & d_{i k, 12} \\
d_{i k, 21} & d_{i k, 22}
\end{array}\right]
$$

be the 2×2 matrix expressing the firm's input elasticities' part of (97): i.e.,

Then, I can write (97) as

$$
\begin{align*}
\frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}} & =d_{i k, 11} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+d_{i k, 12} \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}} \tag{98}\\
\frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}^{*}} & =d_{i k, 21} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+d_{i k, 22} \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}} \tag{99}
\end{align*}
$$

Next, observe that from (86), I can write

$$
\begin{equation*}
\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}=\vartheta_{i, 1}+\vartheta_{i, 2} \frac{d W^{*}}{d \tau_{n, n^{\prime}}} \tag{100}
\end{equation*}
$$

where $\vartheta_{i, 1}$ and $\vartheta_{i, 2}$ are the i-th element of $-\left(I-\Gamma_{2}\right)^{-1}\left[\frac{\gamma_{1, n^{\prime}}}{1-\tau_{1, n^{\prime}}} P_{1}^{M^{*}} \mathbb{1}_{\{n=1\}}, \ldots, \frac{\gamma_{N, n^{\prime}}}{1-\tau_{N, n^{\prime}}} P_{N}^{M^{*}} \mathbb{1}_{\{n=N\}}\right]^{\prime}$ and $\left(I-\Gamma_{2}\right)^{-1} \Gamma_{1} \iota$, respectively.

Therefore, upon substituting (100) into (98), I arrive at

$$
\begin{align*}
\frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}} & =d_{i k, 11} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}+d_{i k, 12}\left(\vartheta_{i, 1}+\vartheta_{i, 2} \frac{d W^{*}}{d \tau_{n, n^{\prime}}}\right) \\
& =\vartheta_{i, 1} d_{i k, 12}+\left(d_{i k, 11}+\vartheta_{i, 2} d_{i k, 12}\right) \frac{d W^{*}}{d \tau_{n, n^{\prime}}} \tag{101}
\end{align*}
$$

To ensure the point identification, I maintain the following regularity condition.
Assumption C. 9 (Regularity Condition). $\sum_{i=1}^{N} \sum_{k=1}^{N_{i}}\left(d_{i k, 11}+\vartheta_{i, 2} d_{i k, 12}\right) \neq 0$.
The implication of this assumption is studied in Remark C.6.
Lemma C. 9 (Identification of $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$). Suppose that the assumptions required in Lemma C. 8 are satisfied. Assume moreover that Assumption C. 9 holds. Then, the value of $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$ is identified.
Proof. Totally differentiating the labor market clearing condition (22), I have

$$
\frac{d L}{d \tau_{n, n^{\prime}}}=\sum_{i=1}^{N} \sum_{k=1}^{N_{i}} \frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}} .
$$

Since here labor supply is inelastic, it then must be $\frac{d L}{d \tau_{n, n^{\prime}}}=0$, so that

$$
\begin{equation*}
0=\sum_{i=1}^{N} \sum_{k=1}^{N_{i}} \frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}} \tag{102}
\end{equation*}
$$

Substituting (101) for $\frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}}$ into (102) leads us to

$$
\begin{equation*}
0=\sum_{i=1}^{N} \sum_{k=1}^{N_{i}}\left\{\vartheta_{i, 1} d_{i k, 12}+\left(d_{i k, 11}+\vartheta_{i, 2} d_{i k, 12}\right) \frac{d W^{*}}{d \tau_{n, n^{\prime}}}\right\} \tag{103}
\end{equation*}
$$

which, under Assumption C.9, can be rearranged to

$$
\frac{d W^{*}}{d \tau_{n, n^{\prime}}}=-\frac{\sum_{i=1}^{N} \sum_{k=1}^{N_{i}} \vartheta_{i, 1} d_{i k, 12}}{\sum_{i=1}^{N} \sum_{k=1}^{N_{i}}\left(d_{i k, 11}+\vartheta_{i, 2} d_{i k, 12}\right)} .
$$

Given that $\vartheta_{i, 1}, \vartheta_{i, 2}, d_{i k, 11}$, and $d_{i k, 12}$ are all identified, this expression identifies the value of $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$, proving the claim.

Remark C.6. Since (103) is essentially an identity (i.e., the labor market clearing condition), when Assumption C. 9 is violated, it should also holds that

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{k=1}^{N_{i}} \vartheta_{i, 1} d_{i k, 12}=0 \\
& \therefore \sum_{i=1}^{N} \vartheta_{i, 1} \sum_{k=1}^{N_{i}} d_{i k, 12}=0
\end{aligned}
$$

where the left-hand side allows for an interpretation as an weighted average of an within-sector competitiveness measure $\sum_{k=1}^{N_{i}} d_{i k, 12}$ weighted by the location $\vartheta_{i, 1}$ of that sector on the production network. Hence, this indicates asymmetry either among firms or sectors.

Proposition C. 4 (Full Identification of the Comparative Statics). Suppose that the assumptions required in Lemma C. 9 are satisfied. Then all the relevant comparative statics are fully identified from the observables.

Proof. Under the maintained assumptions, I can invoke Lemmas C.5, C.6, C. 7 and C. 8 to identify, respectively, $\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}, \frac{d P_{i}^{*}}{d \tau_{n, n^{\prime}}}, \frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}}, \frac{d e_{i k}^{*}}{d \tau_{n, n^{\prime}}}$ and $\frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}}$ up to $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$. Meanwhile, it is possible to recover $\frac{d W^{*}}{d \tau_{n, n^{\prime}}}$ from observables as studied in Lemma C.9. Thus, I can identify all the relevant comparative statics, such as $\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}, \frac{d P_{i}^{*}}{d \tau_{n, n^{\prime}}}, \frac{d q_{i k}^{*}}{d \tau_{n, n^{\prime}}}, \frac{d \ell_{i k}^{*}}{d \tau_{n, n^{\prime}}}$ and $\frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}}$, from observables, as claimed.

Observe that as far as the structure of the demand function is concerned, both perfectly competitive markets and monopolistic markets can be viewed as special cases of oligopolistic markets. Notice moreover that an economy without the production network can be embedded into the current framework as an extreme scenario, where the off-diagonal elements of the input-output matrix are set to zero . These insights take us to the following corollary.

Corollary C.2. Suppose that the assumptions required in Lemma C. 9 are satisfied. Then, i) if the market is perfectly competitive, a version of Proposition C. 4 holds with letting $\frac{\partial \psi_{i k}(\cdot)}{\partial q_{i k^{\prime}}}=0$ for all $k, k^{\prime} \in \mathbf{N}_{i}$ with the sectoral equilibrium concepts appropriately modified; ii) if the market is monopolistically competitive, a version of Proposition C. 4 holds with letting $\frac{\partial \psi_{i k}(\cdot)}{\partial q_{i k^{\prime}}}=0$ for all $k^{\prime} \neq k \in \mathbf{N}_{i}$ with the sectoral equilibrium concepts appropriately modified; and iii) if the sectoral network is absent, a version of Proposition C. 4 holds with letting $\gamma_{i, j}=0$ for all $i \neq j \in \mathbf{N}$.

C.3.3 Cost Minimization 2: Derived Demand for Sectoral Goods

Next, when the change in material input $\frac{d m_{i k}^{*}}{d \tau_{n}}$ is determined, the derived demand for sectoral goods are in turn adjusted so as to minimize the expenditure for purchase of those goods. Totally differentiating (55), I have

$$
\begin{equation*}
\frac{d m_{i k, j}^{*}}{d \tau_{n, n^{\prime}}}=\left(\frac{1}{1-\tau_{n, n^{\prime}}} \mathbb{1}_{\left\{i=n, j=n^{\prime}\right\}}+\frac{1}{P_{i}^{M^{*}}} \frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}-\frac{1}{P_{j}^{*}} \frac{d P_{j}^{*}}{d \tau_{n, n^{\prime}}}+\frac{1}{m_{i k}^{*}} \frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}^{*}}\right) m_{i k, j}^{*}, \tag{104}
\end{equation*}
$$

where $\mathbb{1}_{\left\{i=n, j=n^{\prime}\right\}}$ is an indicator function that takes one if $i=n$ and $j=n^{\prime}$, and zero otherwise.
Proposition C. 5 (Identification of $\frac{d m_{i k, j}^{*}}{d \tau_{n, n^{\prime}}}$). Suppose that the assumptions required in Proposition C. 4 are satisfied. Assume moreover that Assumption B.4 holds. Then for each $i \in \mathbf{N}$ and for each $k \in \mathbf{N}_{i}$, $\left\{\frac{d m_{i k, j}^{*}}{d \tau_{n, n^{\prime}}^{\prime}}\right\}_{j=1}^{N}$ are identified from the observables.

Proof. First, in view of Facts B. 4 and B.5, $m_{i k, j}^{*}$ and $P_{i}^{M^{*}}$ are obtained from the data, respectively. Next, owing to Proposition C.4, the total derivatives $\frac{d P_{i}^{M^{*}}}{d \tau_{n, n^{\prime}}}, \frac{d P_{i}^{*}}{d \tau, n^{\prime}}$ and $\frac{d m_{i k}^{*}}{d \tau_{n, n^{\prime}}}$ are all identified from the observables. Hence, $\frac{d m_{i k, j}^{*}}{d \tau_{n, n^{\prime}}}$ is identified through (104), as desired.

C. 4 Recovering the Second-Order Partial Derivatives of the Firm-Level Production Functions

The goal of this section is to identify the second order derivatives of f_{i} with respect to $\ell_{i k}$ and $m_{i k}$. First of all, observe that under Assumption C.8, there exits a function $g_{i}: \mathscr{L}_{i} \times \mathscr{M}_{i} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f_{i}\left(\ell_{i k}, m_{i k} ; z_{i k}\right)=z_{i k} g_{i}\left(\ell_{i k}, m_{i k}\right), \tag{105}
\end{equation*}
$$

for all $\left(\ell_{i k}, m_{i k}, z_{i k}\right) \in \mathscr{L}_{i} \times \mathscr{M}_{i} \times \mathscr{Z}_{i}$. I define $\tilde{g}_{i}: \tilde{\mathscr{L}}_{i} \times \tilde{\mathscr{M}}_{i} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\tilde{f}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k} ; \tilde{z}_{i k}\right)=\tilde{z}_{i k}+\tilde{g}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right) . \tag{106}
\end{equation*}
$$

Our identification strategy is based on the following relationships between the partial derivatives of \tilde{g}_{i} and those of f_{i}.

Fact C.7. Under Assumption C.8, it holds that for all $\left(\ell_{i k}, m_{i k}, z_{i k}\right) \in \mathscr{L}_{i} \times \mathscr{M}_{i} \times \mathscr{Z}_{i}$,
(i) $\frac{\partial \tilde{f}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}=\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}$ and $\frac{\partial \tilde{i}_{i}(\cdot)}{\partial \tilde{m}_{i k}}=\frac{\partial \tilde{z}_{i}(\cdot)}{\partial \tilde{m}_{i k}}$;
(ii) $\frac{\partial f_{i}(\cdot)}{\partial \ell_{i k}}=\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}} \frac{f_{i}(\cdot)}{\ell_{i k}}$ and $\frac{\partial f_{i}(\cdot)}{\partial m_{i k}}=\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{m}_{i k}} \frac{f_{i}(\cdot)}{m_{i k}}$;
(iii) $\frac{\partial^{2} f_{i}(\cdot)}{\partial \ell_{i k}^{2}}=\frac{f_{i}(\cdot)}{\ell_{i k}^{2}}\left\{\frac{\partial^{2} \tilde{g}_{(}(\cdot)}{\partial \tilde{e}_{i k}^{2}}+\left(\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}\right)^{2}+\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \ddot{\ell}_{i k}}\right\}, \frac{\partial^{2} f_{i}(\cdot)}{\partial m_{i k}^{2}}=\frac{f_{i}(\cdot)}{m_{i k}^{2}}\left\{\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{m}_{i k}^{2}}+\left(\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{m}_{i k}}\right)^{2}+\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{m}_{i k}}\right\}$ and $\frac{\partial^{2} f_{i}(\cdot)}{\partial \ell_{i k} \partial m_{i k}}=$ $\frac{f_{i}(\cdot)}{\bar{\ell}_{i k} m_{i k}}\left(\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{i}_{i k} \partial \tilde{m}_{i k}}+\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\varepsilon}_{i k}} \frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{m}_{i k}}\right)$,
where $f_{i}(\cdot):=f_{i}\left(\ell_{i k}, m_{i k} ; z_{i k}\right)$ and $\tilde{g}_{i}(\cdot):=\tilde{g}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)$.

Proof. (i) This immediately follows from taking (partial) derivatives of the both hand sides of (106) with respect to $\ell_{i k}$ and $m_{i k}$, respectively.
(ii) First, by definition

$$
g_{i}\left(\ell_{i k}, m_{i k}\right)=\exp \left\{\tilde{g}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)\right\},
$$

so that the partial derivative with respect to $\ell_{i k}$ reads

$$
\begin{aligned}
\frac{\partial g_{i}(\cdot)}{\partial \ell_{i k}} & =\exp \left\{\tilde{g}_{i}(\cdot)\right\} \frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}} \frac{d \ln \ell_{i k}}{d \ell_{i k}} \\
& =\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}} \frac{g_{i}(\cdot)}{\ell_{i k}} .
\end{aligned}
$$

Similarly, it holds that

$$
\frac{\partial g_{i}(\cdot)}{\partial m_{i k}}=\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{m}_{i k}} \frac{g_{i}(\cdot)}{m_{i k}} .
$$

Now, it follows from (105) that $\frac{\partial f_{i}(\cdot)}{\partial \ell_{i k}}=z_{i k} \frac{\partial g_{i}(\cdot)}{\partial \ell_{i k}}$ and $\frac{\partial f_{i}(\cdot)}{\partial m_{i k}}=z_{i k} \frac{\partial g_{i}(\cdot)}{\partial m_{i k}}$. Thus I have

$$
\begin{aligned}
\frac{\partial f_{i}(\cdot)}{\partial \ell_{i k}} & =z_{i k} \frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}} \frac{g_{i}(\cdot)}{\ell_{i k}} \\
& =\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}} \frac{f_{i}(\cdot)}{\ell_{i k}},
\end{aligned}
$$

and

$$
\frac{\partial f_{i}(\cdot)}{\partial m_{i k}}=\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{m}_{i k}} \frac{f_{i}(\cdot)}{m_{i k}},
$$

(iii) Taking the (partial) derivatives of the result of Part (ii),

$$
\begin{aligned}
\frac{\partial^{2} f_{i}(\cdot)}{\partial \ell_{i k}^{2}} & =\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}^{2}} \frac{f_{i}(\cdot)}{\ell_{i k}^{2}}+\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}} \frac{\partial f_{i}(\cdot)}{\partial \ell_{i k}} \frac{1}{\ell_{i k}}-\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}} \frac{f_{i}(\cdot)}{\ell_{i k}^{2}} \\
& =\frac{f_{i}(\cdot)}{\ell_{i k}^{2}}\left\{\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}^{2}}+\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}} \frac{\ell_{i k}}{f_{i}(\cdot)} \frac{\partial f_{i}(\cdot)}{\partial \ell_{i k}}-\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}\right\} \\
& =\frac{f_{i}(\cdot)}{\ell_{i k}^{2}}\left\{\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}^{2}}+\left(\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}\right)^{2}-\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}\right\},
\end{aligned}
$$

where the last equality is again due to Part (ii) of this fact.
An analogous argument applies to $\frac{\partial^{2} f_{i}(\cdot)}{\partial m_{i k}^{2}}$ as well.
Next, differentiating Part (ii) also yields that

$$
\frac{\partial^{2} f_{i}(\cdot)}{\partial \ell_{i k} \partial m_{i k}}=\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k} \partial \tilde{m}_{i k}} \frac{f_{i}(\cdot)}{\ell_{i k} m_{i k}}+\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}} \frac{\partial f_{i}(\cdot)}{\partial m_{i k}} \frac{1}{\ell_{i k}}
$$

$$
\begin{aligned}
& =\frac{f_{i}(\cdot)}{\ell_{i k} m_{i k}}\left\{\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k} \partial \tilde{m}_{i k}}+\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}} \frac{m_{i k}}{f_{i}(\cdot)} \frac{\partial f_{i}(\cdot)}{\partial m_{i k}}\right\} \\
& =\frac{f_{i}(\cdot)}{\ell_{i k} m_{i k}}\left\{\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k} \partial \tilde{m}_{i k}}+\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}} \frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{m}_{i k}}\right\},
\end{aligned}
$$

where I once again use Part (ii) to derive the last equality. This completes the proof.
The identification results of Gandhi et al. (2019) rest on Fact C. 7 (i). I further leverage insights from Fact C. 7 (ii) and (iii). In particular, observe that looking at (ii) in equilibrium,

$$
\begin{aligned}
\frac{\partial f_{i}(\cdot)^{*}}{\partial \ell_{i k}} & =\frac{\partial \tilde{g}_{i}(\cdot)^{*}}{\partial \tilde{\ell}_{i k}} \frac{f_{i}\left(\ell_{i k}^{*}, m_{i k}^{*}\right)}{\ell_{i k}^{*}} \\
& =\frac{\partial \tilde{g}_{i}(\cdot)^{*}}{\partial \tilde{\ell}_{i k}} \frac{q_{i k}^{*}}{\ell_{i k}^{*}},
\end{aligned}
$$

where the second equality follows from Proposition C.2. Likewise,

$$
\frac{\partial f_{i}(\cdot)^{*}}{\partial m_{i k}}=\frac{\partial \tilde{g}_{i}(\cdot)^{*}}{\partial \tilde{m}_{i k}} \frac{q_{i k}^{*}}{m_{i k}^{*}} .
$$

Moreover, invoking (iii) in equilibrium, I have

$$
\begin{equation*}
\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k}^{2}}=\frac{q_{i k}^{*}}{\left(\ell_{i k}^{*}\right)^{2}}\left\{\frac{\partial^{2} \tilde{g}_{i}(\cdot)^{*}}{\partial \tilde{\ell}_{i k}^{2}}+\left(\frac{\partial \tilde{g}_{i}(\cdot)^{*}}{\partial \tilde{\ell}_{i k}}\right)^{2}-\frac{\partial \tilde{g}_{i}(\cdot)^{*}}{\partial \tilde{\ell}_{i k}}\right\} \tag{107}
\end{equation*}
$$

and also

$$
\begin{equation*}
\frac{\partial^{2} f_{i}(\cdot)^{*}}{\partial \ell_{i k} \partial m_{i k}}=\frac{q_{i k}^{*}}{\ell_{i k}^{*} m_{i k}^{*}}\left\{\frac{\partial^{2} \tilde{g}_{i}(\cdot)^{*}}{\partial \tilde{\ell}_{i k} \partial \tilde{m}_{i k}}+\left(\frac{\partial \tilde{g}_{i}(\cdot)^{*}}{\partial \tilde{\ell}_{i k}}\right)\left(\frac{\partial \tilde{g}_{i}(\cdot)^{*}}{\partial \tilde{m}_{i k}}\right)\right\} . \tag{108}
\end{equation*}
$$

Since $q_{i k}^{*}$ can be identified from Proposition C.2, it remains to identify the values of the secondorder derivatives of $\tilde{g}_{i}(\cdot)$ with respect to $\tilde{\ell}_{i k}$ and $\tilde{m}_{i k}$. To this end, I follow Gandhi et al. (2019) in nonparametrically identifying the first-oder partial derivatives of $\tilde{g}(\cdot)$ as a function of $\tilde{\ell}_{i k}$ and $\tilde{m}_{i k}$.

Remark C.7. Although the equilibrium values $\frac{\partial \tilde{g}_{i}(\cdot)^{*}}{\partial \tilde{\partial}_{i k}}$ and $\frac{\partial \tilde{g}_{i}(\cdot)^{*}}{\partial \tilde{m}_{i k}}$ can be recovered from the observables under Assumption 3.5 (i) (see Proposition C.1), I still need to identify $\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{i}_{i k}}$ and $\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{m}_{i k}}$ as a function of $\tilde{\ell}_{i k}$ and $\tilde{m}_{i k}$ over the entire support $\tilde{\mathscr{L}}_{i} \times \tilde{\mathscr{M}}_{i}$, so that the second-order derivatives of $\tilde{g}_{i}(\cdot)$ can be derived.

The identification equations for the second-order derivatives are based on the one-step profit maximization set out in Appendix C.3.1. Under Assumption C.8, multiplying (76) by $\ell_{i k}$ and dividing by $p_{i k} q_{i k}$ lead to

$$
\begin{aligned}
& \frac{m r_{i k}}{p_{i k}} \frac{\partial f_{i}(\cdot)}{\partial \ell_{i k}} \frac{\ell_{i k}}{q_{i k}}=\frac{W \ell_{i k}}{p_{i k} q_{i k}} \\
& \therefore \frac{1}{\mu_{i k}} \frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}=s_{i k}^{\ell},
\end{aligned}
$$

where $s_{i k}^{\ell}:=\frac{W \ell_{i k}}{p_{i k} q_{i k}}$ is the labor cost relative to the revenue. Moreover, I use the fact that the marginal revenue equals to the marginal cost in equilibrium, thereby implying $\mu_{i k}:=\frac{p_{i k}}{m c_{i k}}=\frac{p_{i k}}{m r_{i k}}$. Taking the logarithm of this expression, I have

$$
\begin{equation*}
\ln s_{i k}^{\ell}=\ln \frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}-\ln \mu_{i k} \tag{109}
\end{equation*}
$$

However, in general this relationship cannot be directly fed into the data when the output market is imperfectly competitive, because firm-level markup have to be identified and thus estimated simultaneously (Kasahara and Sugita 2020). Nevertheless, I emphasize that under Assumption 3.5 (i), $\mu_{i k}$ is recovered in advance of solving (109) for the first-order derivative of \tilde{g}_{i} with respect to $\tilde{\ell}_{i k}$ (Fact C.1). Taking stock of this, I adopt the same empirical specification as Gandhi et al. (2019):

$$
\begin{equation*}
\tilde{s}_{i k}^{\ell, \tilde{\mu}}=\ln \mathcal{E}_{i}^{\ell}+\ln \frac{\partial \tilde{g}_{i}}{\partial \tilde{\ell}_{i k}}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)-\tilde{\varepsilon}_{i k}^{\ell}, \tag{110}
\end{equation*}
$$

where $\tilde{s}_{i k}^{\ell, \tilde{\mu}}:=\ln s_{i k}^{\ell}+\ln \mu_{i k}$ can readily be calculated from the data, and $\tilde{\varepsilon}_{i k}^{\ell}$ is a measurement error with $E\left[\tilde{\varepsilon}_{i k}^{\ell} \mid \tilde{\ell}_{i k}, \tilde{m}_{i k}\right]=0$. The measurement error $\tilde{\varepsilon}_{i k}^{\ell}$ captures any unmodeled, non-systematic noise both in $s_{i k}^{\ell}$ and $\mu_{i k}$, and is associated with the constant \mathcal{E}_{i}^{ℓ} through $\mathcal{E}_{i}^{\ell}=E\left[\exp \left\{\tilde{\varepsilon}_{i k}^{\ell}\right\}\right]$. Inclusion of the mean \mathcal{E}_{i}^{ℓ} is based on the suggestion made in Gandhi et al. (2019).

Our identification result is based on Gandhi et al. (2019), which is summarized in the following lemma for the sake of completion.

Lemma C. 10 (Theorem 2 of Gandhi et al. (2019)). Suppose that Assumptions 3.5 and C. 8 hold. Then, the share regression (110) identifies both the labor elasticity and material elasticity of the log-production function for all $\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right) \in \tilde{\mathscr{L}}_{i} \times \tilde{\mathscr{M}}_{i}$.

Proof. First, I start by writing (110) as

$$
\begin{equation*}
\tilde{s}_{i k}^{\ell, \tilde{\mu}}=\ln D_{i k}^{\ell}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)-\tilde{\varepsilon}_{i k}^{\ell}, \tag{111}
\end{equation*}
$$

where $\ln D_{i k}^{\ell}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right):=\ln \mathcal{E}_{i}^{\ell}+\ln \frac{\partial \tilde{g}_{i}}{\partial \tilde{\ell}_{i k}}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)$. I can nonparametrically identify $\ln D_{i k}^{\ell}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)$ according to

$$
\ln D_{i k}^{\ell}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)=E\left[\tilde{s}_{i k}^{\ell}, \tilde{\mu} \mid \tilde{\ell}_{i k}, \tilde{m}_{i k}\right]
$$

for all $\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right) \in \tilde{\mathscr{L}}_{i} \times \tilde{\mathscr{M}}_{i}$. The error term $\tilde{\varepsilon}_{i k}^{\ell}$ is identified through the specification (111):

$$
\begin{equation*}
\tilde{\varepsilon}_{i k}^{\ell}=\ln D_{i k}^{\ell}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)-\tilde{s}_{i k}^{\ell, \tilde{\mu}} \tag{112}
\end{equation*}
$$

which in turn identifies the mean \mathcal{E}_{i}^{ℓ} :

$$
\begin{equation*}
\mathcal{E}_{i}^{\ell}=E\left[\exp \left\{\tilde{\varepsilon}_{i k}^{\ell}\right\}\right] \tag{113}
\end{equation*}
$$

Next, plug these back into the the definition of $\ln D_{i k}^{\ell}$, I identify the log-labor input elasticity of the
log-production function:

$$
\begin{aligned}
\ln \frac{\partial \tilde{g}_{i}}{\partial \tilde{\ell}_{i k}}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right) & =\ln D_{i k}^{\ell}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)-\ln \mathcal{E}_{i}^{\ell} \\
& =\ln \frac{D_{i k}^{\ell}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)}{\mathcal{E}_{i}^{\ell}}
\end{aligned}
$$

yielding

$$
\begin{equation*}
\frac{\partial \tilde{g}_{i}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)}{\partial \tilde{\ell}_{i k}}=\frac{D_{i k}^{\ell}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)}{\mathcal{E}_{i}^{\ell}} \tag{114}
\end{equation*}
$$

for all $\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right) \in \tilde{\mathscr{L}}_{i} \times \tilde{\mathscr{M}}_{i}$. The exact same argument holds for the log-material input elasticity of the log-production function $\frac{\partial \tilde{g}_{i} \cdot()}{\partial \tilde{m}_{i k}}$, completing the proof.
Remark C.8. Lemma C. 10 identifies the log-production function for the entire support $\tilde{\mathscr{L}}_{i} \times \tilde{\mathscr{M}}_{i}$ beyond the subspace spanned by the equilibrium relations (Gandhi et al. 2019; Pan 2022). Thus from this result I can also identify partial derivatives of \tilde{g}_{i} of arbitrary order, as exemplified in Corollary C.3.

Corollary C.3. The second-order derivatives of log-production function with respect to log-labor and log-material inputs, i.e., $\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}^{2}}, \frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{m}_{i k}^{2}}$, and $\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k} \tilde{m}_{i k}}$, are nonparametrically identified for all $\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right) \in$ $\tilde{\mathscr{L}}_{i} \times \tilde{\mathscr{M}}_{i}$.

Now I prove that it is possible to identify the values of the second-order derivative of the production function corresponding to the equilibrium labor and material inputs.

Lemma C.11. Suppose that the assumptions required in Proposition C.2 and Lemma C. 10 are satisfied. The values of the second-order derivatives of the production function at equilibrium are identified from the observables.

Proof. Using Fact C. 7 (iii) at the equilibrium (observed) labor $\ell_{i k}^{*}$ and material $m_{i k}^{*}$ inputs, I obtain (107) and (108). Here, $q_{i k}^{*}$ can be recovered in view of Proposition C.2. Moreover, Lemma C. 10 identifies the value of $\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}}$ and $\frac{\partial \tilde{g}_{i}(\cdot)}{\partial \tilde{m}_{i k}}$ at the equilibrium values of inputs $\left(\tilde{\ell}_{i k}^{*}, \tilde{m}_{i k}^{*}\right)$ are identified, while Corollary C. 3 informs us of the equilibrium values of $\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i k}^{2}}$ and $\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{\ell}_{i_{k}} \partial \tilde{m}_{i k}}$. The equilibrium value of $\frac{\partial^{2} \tilde{g}_{i}(\cdot)}{\partial \tilde{m}_{i k}^{2}}$ can be retained through a similar argument. Hence, by tracing (107) and (108), I can recover the values of the second-order derivatives of the production function at equilibrium, as claimed.

Remark C.9. Lemma C. 11 only identifies the values of the second-order derivatives of the firm-level production function at the equilibrium level of labor and material inputs, while being silent about the values at different (counterfactual) values of these inputs. This is because I lack the identification of the production function $f_{i}(\cdot)$ over the entire support; my approach instead rests on the knowledge about the value of equilibrium quantity, given by Proposition C.2. The punchline is that as far as the identification of (28) is concerned, the knowledge about the entire production function is not needed, which obviates additional assumptions.

C. 5 Identification of the Object of Interest

Theorem C. 1 (Identification of $\frac{d Y_{i}(s)}{d s}$). Suppose that the assumptions required in Proposition C. 5 are satisfied. Then, the value of $\frac{d Y_{i}(s)}{d s}$ is identified from the observables for all $s \in\left[\tau_{n, n^{\prime}}^{0}, \tau_{n, n^{\prime}}^{1}\right] \subseteq \mathscr{T}$.

Proof. Provided that Proposition C. 5 holds, the value of $\frac{d Y_{i}(s)}{d s}$ evaluated at a given point in $\left[\tau_{n, n^{\prime}}^{0}, \tau_{n, n^{\prime}}^{1}\right]$ is identified according to (56). I can repeat the same argument for each point in the region $\left[\tau_{n, n^{\prime}}^{0}, \tau_{n, n^{\prime}}^{1}\right] \subseteq \mathscr{T}$, thereby recovering the function $\frac{d Y_{i}(s)}{d s}$ for all $s \in\left[\tau_{n, n^{\prime}}^{0}, \tau_{n, n^{\prime}}^{1}\right] \subseteq \mathscr{T}$.

Corollary C. 4 (Identification of the Object of Interest). Suppose that the assumptions required in Theorem C. 1 are satisfied. Then, the object of interest (24) is identified from the observables.

Proof. In light of (27), I can write

$$
\sum_{i=1}^{N} Y_{i}\left(\boldsymbol{\tau}^{1}\right)-\sum_{i=1}^{N} Y_{i}\left(\boldsymbol{\tau}^{0}\right)=\sum_{i=1}^{N} \int_{\tau_{n, n^{\prime}}^{0}}^{\tau_{n, n^{\prime}}^{1}} \frac{d Y_{i}(s)}{d s} d s
$$

Here, it holds from Theorem C. 1 that for each $i \in \mathbf{N}$, the function $\frac{d Y_{i}(s)}{d s}$ is identified over $\left[\tau_{n, n^{\prime}}^{0}, \tau_{n, n^{\prime}}^{1}\right] \subseteq \mathscr{T}$. Therefore, by integrating the function $\frac{d Y_{i}(s)}{d s}$ over this region, and adding it up over all sectors, I can recover the left-hand side (i.e., the object of interest (24)), as desired.

Proof of Theorem 5.1. The argument expanded so far continues to hold when sector-input-specific subsidy $\tau_{n, n^{\prime}}$ is replaced by sector-specific one τ_{n}. For example, the expression (83) now reads:

$$
\frac{d P_{i}^{M^{*}}}{d \tau_{n}}=-\frac{1}{1-\tau_{n}} P_{i}^{M^{*}} \mathbb{1}_{\{i=n\}}+\sum_{j=1}^{N} \gamma_{i, j} \frac{P_{i}^{M^{*}}}{P_{j}^{*}} \frac{d P_{j}^{*}}{d \tau_{n, n^{\prime}}}
$$

where $\mathbb{1}_{\{i=n\}}$ equals one if $i=n$, and zero otherwise. It is immediate to show a version of the result of Corollary C. 4 for this case. This observation establishes the theorem.

D Estimation Strategies

D. 1 Firm-Level Quantities \& Prices

To estimate $\tilde{\phi}_{i}(\cdot)$ in Step 1 of Lemma C.1, I consider the second-order polynomial regression specification: ${ }^{115}$ namely,

$$
\begin{align*}
\tilde{r}_{i k} & =b_{i, 0}+b_{i, 1} \tilde{\ell}_{i k}+b_{i, 2} \tilde{m}_{i k}+b_{i, 3} \tilde{\ell}_{i k}^{2}+b_{i, 4} \tilde{m}_{i k}^{2}+b_{i, 5} \tilde{\ell}_{i k} \tilde{m}_{i k}+\tilde{\eta}_{i k} \\
& =\tilde{x}_{i k} \boldsymbol{b}_{i}+\tilde{\eta}_{i k}, \tag{115}
\end{align*}
$$

[^51]where $\tilde{x}_{i k}:=\left[\tilde{\ell}_{i k}, \tilde{m}_{i k}, \tilde{\ell}_{i k}^{2}, \tilde{m}_{i k}^{2}, \tilde{\ell}_{i k} \tilde{m}_{i k}\right]^{\prime}$ and $\mathbf{b}_{i}:=\left[b_{i, 0}, b_{i, 1}, b_{i, 2}, b_{i, 3}, b_{i, 4}, b_{i, 5}\right]^{\prime}$. Stacking in matrix form, I obtain
$$
\tilde{\mathbf{r}}_{i}=\tilde{\mathbf{x}}_{i} \mathbf{b}_{i}+\tilde{\boldsymbol{\eta}}_{i}
$$
where $\tilde{\mathbf{r}}_{i}:=\left[\tilde{r}_{i 1}, \ldots, \tilde{r}_{i N_{i}}\right]^{\prime}$, and and thus the ordinary least square (OLS) estimator is given by
$$
\hat{\mathbf{b}}_{i}=\left(\tilde{\mathbf{x}}_{i}^{\prime} \tilde{\mathbf{x}}_{i}\right)^{-1} \tilde{\mathbf{x}}_{i}^{\prime} \tilde{\mathbf{r}}_{i} .
$$

Hence, the fitted value of the log-revenue $\tilde{r}_{i k}$ is

$$
\hat{\tilde{\phi}}_{i}\left(\tilde{x}_{i k}\right):=\tilde{x}_{i k} \hat{\mathbf{b}}_{i} .
$$

Moreover, given the estimator $\hat{\mathbf{b}}_{i}$, the specification (115) naturally gives rise to the estimator for the first-order partial derivatives of $\tilde{\phi}_{i}(\cdot)$ with respect to $\tilde{\ell}_{i k}$ and $\tilde{m}_{i k}$:

$$
\begin{aligned}
& \frac{\widehat{\partial \tilde{\phi}}_{i}}{\frac{\partial \tilde{\ell}_{i k}}{}}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right):=\hat{b}_{i, 1}+2 \hat{b}_{i, 3} \tilde{\ell}_{i k}+\hat{b}_{i, 5} \tilde{m}_{i k} \\
& \frac{\partial \tilde{\phi}_{i}}{\partial \tilde{m}_{i k}}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right):=\hat{b}_{i, 2}+2 \hat{b}_{i, 4} \tilde{m}_{i k}+\hat{b}_{i, 5} \tilde{\ell}_{i k} .
\end{aligned}
$$

D. 2 Second-Order Derivatives of the Firm-Level Production Function

As proposed in Gandhi et al. (2019), my nonparametric estimators are based on approximating the share regression (111) by a complete polynomial of degree two, and starts from solving the following least square formula:

$$
\hat{\zeta} \in \underset{\zeta^{\circ}}{\arg \min } \sum_{k=1}^{N_{i}}\left\{\tilde{s}_{i k}^{\ell, \tilde{\mu}}-\ln \left\{\zeta_{i, 0}^{\circ}+\zeta_{i, 1}^{\circ} \tilde{\ell}_{i k}+\zeta_{i, 2}^{\circ} \tilde{m}_{i k}+\zeta_{i, 3}^{\circ} \tilde{\ell}_{i k}^{2}+\zeta_{i, 4}^{\circ} \tilde{m}_{i k}^{2}+\zeta_{i, 5}^{\circ} \tilde{\ell}_{i k} \tilde{m}_{i k}\right\}\right\}^{2} .
$$

The solution to this minimization problem $\hat{\boldsymbol{\zeta}}$ gives rise to an estimator for $D_{i k}^{\ell}(\cdot)$:

$$
\widehat{D}_{i k}^{\ell}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right):=\hat{\zeta}_{i, 0}+\hat{\zeta}_{i, 1} \tilde{\ell}_{i k}+\hat{\zeta}_{i, 2} \tilde{m}_{i k}+\hat{\zeta}_{i, 3} \tilde{\ell}_{i k}^{2}+\hat{\zeta}_{i, 4} \tilde{m}_{i k}^{2}+\hat{\zeta}_{i, 5} \tilde{\ell}_{i k} m_{i k} .
$$

This, in conjunction (112) and (113), motivates the plug-in estimators for $\varepsilon_{i k}$ and \mathcal{E}_{i} :

$$
\hat{\varepsilon}_{i k}^{\ell}:=\ln \widehat{D}_{i k}^{\ell}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)-\tilde{s}_{i k}^{\ell, \tilde{\mu}},
$$

and

$$
\widehat{\mathcal{E}}_{i}^{\ell}:=\frac{1}{N_{i}} \sum_{k=1}^{N_{i}} \exp \left\{\hat{\varepsilon}_{i k}\right\},
$$

respectively. Based on (114), the estimator for the first-order derivative of the log-production function
with respect to log-labor input is thus given by

$$
\begin{aligned}
\frac{\widehat{\partial \tilde{g}_{i}}}{\partial \tilde{\ell}_{i k}}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right) & :=\frac{\widehat{D}_{i k}^{\ell}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right)}{\widehat{\mathcal{E}}_{i}^{\ell}} \\
& =\frac{1}{\hat{\mathcal{E}}_{i}^{\ell}}\left(\hat{\zeta}_{i, 0}+\hat{\zeta}_{i, 1} \tilde{\ell}_{i k}+\hat{\zeta}_{i, 2} \tilde{m}_{i k}+\hat{\zeta}_{i, 3} \tilde{\ell}_{i k}^{2}+\hat{\zeta}_{i, 4} \tilde{m}_{i k}^{2}+\hat{\zeta}_{i, 5} \tilde{\ell}_{i k} \tilde{m}_{i k}\right) .
\end{aligned}
$$

From this, I can also define the estimators for the second-order derivatives of log-production function with respect to log-labor and log-material inputs:

$$
\begin{aligned}
& \frac{\widehat{\partial}^{2} \tilde{g}_{i}}{\partial \tilde{\ell}_{i k}^{2}}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right):=\frac{1}{\hat{\mathcal{E}}_{i}^{\ell}}\left\{\left(\hat{\zeta}_{i, 1}+2 \hat{\zeta}_{i, 3}\right) \tilde{\ell}_{i k}+\hat{\zeta}_{i, 5} \tilde{m}_{i k}\right\}, \\
& \frac{\partial^{2} \tilde{g}_{i}}{\partial \tilde{\ell}_{i k} \tilde{m}_{i k}}\left(\tilde{\ell}_{i k}, \tilde{m}_{i k}\right):=\frac{1}{\hat{\mathcal{E}}_{i}^{\ell}}\left\{\left(\hat{\zeta}_{i, 2}+2 \hat{\zeta}_{i, 4}\right) \tilde{m}_{i k}+\hat{\zeta}_{i, 5} \tilde{\ell}_{i k}\right\} .
\end{aligned}
$$

Note that $\left.\widehat{\frac{\partial^{2} \hat{g}_{i}}{\partial \tilde{m}_{i k}^{2}}} \tilde{\ell}_{i k}, \tilde{m}_{i k}\right)$ can be analogously defined by applying the same argument as above to the share regression with respect to material input $\tilde{m}_{i k}$.

Guided by the identification result (Lemma C.11), the estimates for the equilibrium values of the second-order derivatives of the production functions are given by

$$
\frac{\partial^{2} f \widehat{\left(\ell_{i k}^{*}, m_{i k}^{*}\right)}}{\partial \ell_{i k}^{2}}=\frac{q_{i k}^{*}}{\left(\ell_{i k}^{*}\right)^{2}}\left\{\frac{\partial^{2} \tilde{g}_{i}}{\frac{\tilde{\ell}_{i k}^{2}}{i}}\left(\tilde{\ell}_{i k}^{*}, \tilde{m}_{i k}^{*}\right)+\left(\frac{\widehat{\partial \tilde{g}_{i}}}{\partial \tilde{\ell}_{i k}}\left(\tilde{\ell}_{i k}^{*}, \tilde{m}_{i k}^{*}\right)\right)^{2}-\frac{\widehat{\partial \tilde{g}_{i}}}{\partial \tilde{\ell}_{i k}}\left(\tilde{\ell}_{i k}^{*}, \tilde{m}_{i k}^{*}\right)\right\},
$$

and

$$
\frac{\partial^{2} f \widehat{f\left(\ell_{i k}^{*}, m_{i k}^{*}\right)}}{\partial \ell_{i k} \partial m_{i k}}=\frac{q_{i k}^{*}}{\ell_{i k}^{*} m_{i k}^{*}}\left\{\frac{\widehat{\partial^{2} \tilde{g}_{i}}}{\partial \tilde{\ell}_{i k} \partial \tilde{m}_{i k}}\left(\tilde{\ell}_{i k}^{*}, \tilde{m}_{i k}^{*}\right)+\frac{\widehat{\partial \tilde{g}_{i}}}{\partial \tilde{\ell}_{i k}}\left(\tilde{\ell}_{i k}^{*}, \tilde{m}_{i k}^{*}\right) \frac{\widehat{\partial \tilde{g}_{i}}}{\partial \tilde{m}_{i k}}\left(\tilde{\ell}_{i k}^{*}, \tilde{m}_{i k}^{*}\right)\right\} .
$$

The estimates $\frac{\partial^{2} \widehat{f\left(\ell_{i k}^{*}, m_{i k}^{*}\right)}}{\partial m_{i k}^{2}}$ is also obtained in an analogous manner.
Remark D.1. In general, it is not possible to obtain estimates of $\frac{\partial^{2} f\left(\ell_{i k}, m_{i k}\right)}{\partial \ell_{i k}^{2}}$ and $\frac{\partial^{2} f\left(\ell_{i k}, m_{i k}\right)}{\partial \ell_{i k} \partial m_{i k}}$ for arbitrary values of $\ell_{i k}$ and $m_{i k}$, as they are not identified for every pair of points $\left(\ell_{i k}, m_{i k}\right)$ in $\mathscr{L}_{i} \times \mathscr{M}_{i}$. Nevertheless, Lemma C. 11 implies that there is still a hope of estimating the values of these functions on the point $\left(\ell_{i k}^{*}, m_{i k}^{*}\right)$.

D. 3 First- and Second-Order Derivatives of the Quantity Index

To begin with, it holds from (71) and (72) that

$$
\begin{equation*}
\sum_{k=1}^{N_{i}} \frac{1}{\Phi_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\ln \frac{q_{i k}}{A_{i}\left(\mathbf{q}_{i}\right)}\right)\right\}=1 \tag{116}
\end{equation*}
$$

Let $x_{i k}:=\frac{q_{i k}}{A_{i}\left(\mathbf{q}_{i}\right)}$ and $\tilde{x}_{i k}:=\ln x_{i k}$. Taking derivatives of (116) with respect to $\bar{k} \in \mathbf{N}_{i}$,

$$
\frac{1}{\Phi_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i \bar{k}}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i \bar{k}}} \frac{d \ln x_{i \bar{k}}}{d x_{i \bar{k}}} \frac{\partial \frac{q_{i \bar{k}}}{A_{i}}}{\partial q_{i \bar{k}}}+\sum_{k \neq \bar{k}} \frac{1}{\Phi_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}} \frac{d \ln x_{i k}}{d x_{i k}} \frac{\partial \frac{q_{i k}}{A_{i}}}{\partial q_{i \bar{k}}}=0 .
$$

Since here

$$
\begin{align*}
\frac{\partial \frac{q_{i \bar{k}}}{A_{i}}}{\partial q_{i \bar{k}}} & =A_{i}^{-1}-q_{i \bar{k}} A_{i}^{-2} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}} \\
& =\frac{1}{A_{i}}\left(1-\frac{q_{i \bar{k}}}{A_{i}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}}\right) \tag{117}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial \frac{q_{i k}}{A_{i}}}{\partial q_{i \bar{k}}}=-\frac{1}{A_{i}} \frac{q_{i k}}{A_{i}} \frac{\partial A_{i}(\cdot)}{\partial q_{i k}} \tag{118}
\end{equation*}
$$

I then have

$$
\begin{align*}
& \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i \bar{k}}} \frac{1}{q_{i \bar{k}}}\left(1-\frac{q_{i \bar{k}}}{A_{i}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}}\right)+\sum_{k \neq \bar{k}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}} \frac{1}{A_{i}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}}=0 \\
& \therefore \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i \bar{k}}} \frac{1}{q_{i \bar{k}}}=\frac{1}{A_{i}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}} \sum_{k=1}^{N_{i}} \exp \left\{\tilde{x}_{i k}\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}} \tag{119}\\
& \therefore \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}}=\frac{A_{i}}{q_{i \bar{k}}} \frac{\exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i \bar{k}}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i \bar{k}}}}{\sum_{k=1}^{N_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\tilde{x}_{i k}}} . \tag{120}
\end{align*}
$$

Substituting (120) back into (117) and (118), I obtain

$$
\begin{equation*}
\frac{\partial \frac{q_{i \bar{k}}}{A_{i}}}{\partial q_{i \bar{k}}}=\frac{1}{A_{i}}\left(1-\frac{\exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i \bar{k}}\right)\right\} \frac{\partial \tilde{\varphi}_{i} \cdot()}{\partial \tilde{x}_{i \bar{k}}}}{\sum_{k=1}^{N_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}}}\right), \tag{121}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \frac{q_{i k}}{A_{i}}}{\partial q_{i \bar{k}}}=-\frac{1}{A_{i}} \frac{\exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i \bar{k}}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\hat{x}_{i} \bar{x}^{*}}}{\sum_{k=1}^{N_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}}} \tag{122}
\end{equation*}
$$

Next, I aim to derive analytical expressions for $\frac{\partial^{2} A_{i}(\cdot)}{\partial q_{i \bar{k}}^{2}}$ and $\frac{\partial^{2} A_{i}(\cdot)}{\partial q_{\bar{k}} q_{\bar{k}} \bar{k}^{\prime}}$ for $\bar{k}, \bar{k}^{\prime} \in \mathbf{N}_{i}$, in the sequel. As a starting point, I rewrite (119) as

$$
\begin{equation*}
\exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i \bar{k}}}=\frac{q_{i \bar{k}}}{A_{i}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}} \sum_{k=1}^{N_{i}} \exp \left\{\tilde{x}_{i k}\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}} . \tag{123}
\end{equation*}
$$

Let $l h s_{i \bar{k}}\left(\mathbf{q}_{i}\right)$ and $r h s_{i \bar{k}}\left(\mathbf{q}_{i}\right)$ denote the left and right-hand sides of this equation, respectively.

Taking derivatives of these with respect to $q_{i \bar{k}}$ delivers

$$
\begin{align*}
\frac{\partial l h s_{i}(\cdot)}{\partial q_{i \bar{k}}} & =\exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i \bar{k}}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i \bar{k}}} \frac{d \ln x_{i \bar{k}}}{d x_{i \bar{k}}} \frac{\partial \frac{q_{i \bar{k}}}{A_{i}}}{\partial q_{i \bar{k}}} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i \bar{k}}}+\exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial^{2} \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i \bar{k}}^{2}} \frac{d \ln x_{i \bar{k}}}{d x_{i \bar{k}}} \frac{\partial{\frac{q_{i \bar{k}}}{A_{i}}}_{\partial q_{i \bar{k}}}}{} \\
& =\exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i \bar{k}}\right)\right\} \frac{A_{i}}{q_{i \bar{k}}} \frac{\partial q_{i \bar{k}}}{A_{i}}\left\{\left(\frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial q_{i \bar{k}}} \tilde{x}_{i \bar{k}}\right)^{2}+\frac{\partial^{2} \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i \bar{k}}^{2}}\right\}, \tag{124}
\end{align*}
$$

and

$$
\begin{align*}
\frac{\partial r h s_{i}(\cdot)}{\partial q_{i \bar{k}}}= & \frac{\partial \frac{q_{i \bar{k}}}{A_{i}}}{\partial q_{i \bar{k}}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}} \sum_{k=1}^{N_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}} \\
& +\frac{q_{i \bar{k}}}{A_{i}} \frac{\partial^{2} A_{i}(\cdot)}{\partial q_{i \bar{k}}^{2}} \sum_{k=1}^{N_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}} \\
& +\frac{q_{i \bar{k}}}{A_{i}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}} \frac{\partial}{\partial q_{i \bar{k}}} \sum_{k=1}^{N_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}} \\
= & \frac{\partial \frac{q_{i \bar{k}}}{A_{i}}}{\partial q_{i \bar{k}}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}} \sum_{k=1}^{N_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}} \\
& +\frac{q_{i \bar{k}}}{A_{i}} \frac{\partial^{2} A_{i}(\cdot)}{\partial q_{i \bar{k}}^{2}} \sum_{k=1}^{N_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}} \\
& +\frac{q_{i \bar{k}}}{A_{i}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}} \sum_{k=1}^{N_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{A_{i}}{q_{i k}} \frac{\partial \frac{q_{i k}}{A_{i}}}{\partial q_{i \bar{k}}}\left\{\left(\frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}}\right)^{2}+\frac{\partial^{2} \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}^{2}}\right\} . \tag{125}
\end{align*}
$$

Clearly, taking derivative of the both hand sides of (123) with respect to $q_{i \bar{k}}$ is tantamount to equating (124) to (125). After some algebra, I arrive at

$$
\begin{aligned}
\frac{\partial^{2} A_{i}(\cdot)}{\partial q_{i \bar{k}}^{2}}=- & \frac{A_{i}}{q_{i \bar{k}}} \frac{\partial \frac{q_{i \bar{k}}}{A_{i}}}{\partial q_{i \bar{k}}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}} \\
- & \frac{A_{i}}{q_{i \bar{k}}}\left(\sum_{k=1}^{N_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}}\right)^{-1} \\
& \times\left[\frac{q_{i \bar{k}}}{A_{i}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}} \sum_{k=1}^{N_{i}}\left\{\exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\}\right\} \frac{A_{i}}{q_{i k}} \frac{\partial \frac{q_{i k}}{A_{i}}}{\partial q_{i \bar{k}}}\left\{\left(\frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}}\right)^{2}+\frac{\partial^{2} \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}^{2}}\right\}\right. \\
& \quad-\exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i \bar{k}}\right)\right\} \frac{A_{i}}{q_{i \bar{k}}} \frac{\partial q_{i \bar{k}}}{A_{i}}\left\{\left(\frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial q_{i \bar{k}}} \tilde{x}_{i \bar{k}}^{2}+\frac{\partial^{2} \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i \bar{k}}^{2}}\right\}\right] .
\end{aligned}
$$

Analogously, I can obtain

$$
\begin{aligned}
\frac{\partial^{2} A_{i}(\cdot)}{\partial q_{i \bar{k}} \partial q_{i \bar{k}^{\prime}}}= & -\frac{A_{i}}{q_{i \bar{k}}} \frac{\partial \frac{q_{i \bar{k}}}{A_{i}}}{\partial q_{i \bar{k}^{\prime}}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}} \\
& -\frac{A_{i}}{q_{i \bar{k}}}\left(\sum_{k=1}^{N_{i}} \exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\} \frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left[\frac{q_{i \bar{k}}}{A_{i}} \frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}} \sum_{k=1}^{N_{i}}\left\{\exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i k}\right)\right\}\right\} \frac{A_{i}}{q_{i k}} \frac{\partial \frac{q}{i k}^{A_{i}}}{\partial q_{i \bar{k}^{\prime}}}\left\{\left(\frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}}\right)^{2}+\frac{\partial^{2} \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i k}^{2}}\right\}\right. \\
& \left.\quad-\exp \left\{\tilde{\varphi}_{i}\left(\tilde{x}_{i \bar{k}}\right)\right\} \frac{A_{i}}{q_{i \bar{k}}} \frac{\partial \frac{q_{i \bar{k}}}{A_{i}}}{\partial q_{i \bar{k}^{\prime}}}\left\{\left(\frac{\partial \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i \bar{k}}}\right)^{2}+\frac{\partial^{2} \tilde{\varphi}_{i}(\cdot)}{\partial \tilde{x}_{i \bar{k}}^{2}}\right\}\right] .
\end{aligned}
$$

Note that $\frac{\partial A_{i}(\cdot)}{\partial q_{i \bar{k}}}, \frac{\partial \frac{q_{i \bar{k}}}{\partial_{i}}}{\partial q_{i \bar{k}}}$ and $\frac{\partial \frac{q_{i \bar{k}}}{A_{i}}}{\partial q_{i \overline{k^{\prime}}}}$ are already obtained in (120), (121) and (122), respectively. ${ }^{116}$

E Validation of the Estimation Procedure: Simulation Study

This section verifies the validity of the estimation strategy described in Section 5 through numerical simulations under a parametric specification that is widely used in the literature. Using the parametric model, I first generate simulation data for firm-level revenues, labor and material inputs, productivity, prices, quantity, and other aggregate variables. ${ }^{117}$ Next, I repeat the same simulation with a different value for the policy variable, and then calculate the change in GDP to measure the policy effects (the estimates based on this method is referred to as simulation-based estimates). Now, the question is if the researcher can correctly estimate the policy effects without relying on the knowledge about the underlying parametric model. To highlight this, I also compute the policy effects using the results developed in Sections 5 (the estimates obtained by this approach is called theory-based estimates). To make the simulation as close to reality as possible, the theory-based estimates are calculated without directly using the realization of productivity, prices and quantity as these are not observed in the real data either (see Section 4).

E. 1 Setup

This subsection sets out the parametric form assumptions for the data generating process of this simulation. See Grassi (2017) for the details of the theoretical properties. The sectoral aggregator is assumed to be a constant elasticity of substitution (CES) production function:

$$
Q_{i}=\left(\sum_{k=1}^{N_{i}} \delta_{i k} q_{i k}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}
$$

where σ is elasticity of substitution and $\delta_{i k}$ stands for a demand shifter.
In each sector i, individual firm k transforms labor $\ell_{i k}$ and material $m_{i k}$ into output $q_{i k}$ using a Cobb-Douglas production function:

$$
q_{i k}=z_{i k} \ell_{i k}^{\alpha} m_{i k}^{1-\alpha}
$$

where the output elasticity represents α and $z_{i k}$ is productivity.

[^52]Material input is composed of sectoral intermediate goods according to the Cobb-Douglas production:

$$
m_{i k}=\prod_{j=1}^{N} m_{i k, j}^{\gamma_{i, j}}
$$

where $\gamma_{i, j}$ corresponds to the input share of sector j 's intermediate good, reflecting the production network Ω.

E. 2 Simulation Design

For ease of comparison, I assume that there are only three sectors in the economy (i.e., $N=3$), each of which is populated by the identical set of firms with the number of firms being 50 ; that is, $N_{i}=50$ for all $i \in\{1,2,3\}$. I consider two scenario for the current policy regimes (Scenario A and B). In Scenario A, the current policy regime are all set equal to zero; that is, $\tau_{i}=0$ for all $i \in\{1,2,3\}$. Scenario B assumes that there are nonzero pre-existing policies. I specifically set $\tau_{i}=0.2$ for all $i \in\{1,2,3\}$.

For each scenario, I consider four specifications, referred to as Specification I, II, III and IV. In Specifications I and II firms are monopolistically competitive in each sector. In contrast, firms in Section III and IV are oligopolistic and engaged in a Cournot competition. While Specification I and III assume away from production networks, Specification II and IV admit a production network across sectors. For Specification I and III, the adjacency matrix is equivalent to an identity matrix; that is, $\Omega=I$. We assume that the adjacency matrix in Specification II and IV is given by

$$
\Omega=\left[\begin{array}{ccc}
0.8 & 0.2 & 0 \\
0.2 & 0.6 & 0.2 \\
0 & 0.2 & 0.8
\end{array}\right]
$$

E.2.1 Parameter Values

Parameter values are chosen in such a way that the Cournot-Nash equilibrium is well-defined. First, firms' heterogeneous productivities are drawn from a \log normal distribution: $z_{i k} \sim \log (N(0,0.02))$. I set $\alpha=0.6, \sigma=1.1$ (i.e., firms' products are substitutes) and $\delta_{i k}=\left(1 / N_{i}\right)^{1 / \sigma_{i}}=0.0285$ for all $i \in\{1,2,3\}$ and $k \in\left\{1, \ldots, N_{i}\right\}$.

The researcher has access to firm-level revenue, labor and material inputs, as well as aggregate variables; no access to firm-level productivities, prices and quantities. Consistent with my framework, the observed revenue is contaminated with a measurement error $\eta_{i k} .{ }^{118}$ Lastly, I fix the wage rage at $W=1$ throughout the simulation study, meaning that I focus on a partial equilibrium exercise.

[^53]
E.2.2 Estimands

In view of the decomposition (31), I calculate four effects for each sector as follow:

$$
\left.\frac{d Y_{i}(s)}{d s}\right|_{s=\tau_{n}}=\underbrace{\sum_{k=1}^{N_{i}} \frac{d p_{i k}^{*}}{d \tau_{n}} q_{i k}^{*}}_{\text {price effect }}+\underbrace{\sum_{k=1}^{N_{i}} p_{i k}^{*} \frac{d q_{i k}^{*}}{d \tau_{n}}}_{\text {quantity effect }}-(\underbrace{\sum_{k=1}^{N_{i}} \sum_{j=1}^{N} \frac{d P_{j}^{*}}{d \tau_{n}} m_{i k, j}^{*}}_{\text {wealth effect }}+\underbrace{\sum_{k=1}^{N_{i}} \sum_{j=1}^{N} P_{j}^{*} \frac{d m_{i k, j}^{*}}{d \tau_{n}}}_{\text {switching effect }}) .
$$

In this experiment, I focus on the impacts of increasing the subsidy on sector 1 (i.e., $n=1$). I compare the estimates of these four effects based on the simulation-based method and those based on the theory-based method. To obtain the simulation-based estimates, I run the same model twice, each with a different level of the subsidy. The first simulation is a baseline under the initial setup. The second one is performed with the subsidy level changed to $\tau_{1}=\tau_{1}+\Delta \tau_{1}$ where we set $\Delta \tau_{1}=0.001$, while τ_{2} and τ_{3} are fixed constant. Using the results from these two simulations, I compute the total derivative of each endogenous variable. Let x_{0} and x_{1} be endogenous variables obtained in the first and second simulation, respectively. Then, the total derivative of x is approximated as $\frac{d x}{d \tau_{1}}=\frac{x_{1}-x_{0}}{\Delta \tau_{1}}$.

E. 3 Results

E.3.1 Scenario A

Table 6 compares the simulation-based and theory-based estimates for Scenario A, in which there are no pre-existing policies in place in the initial state. Each cell reports the number obtained by the theorybased method, with the round brackets indicating the corresponding simulation-based estimates.

From this table, it can be said that the theory-based estimates are as good as the simulation-based estimates both quantitatively and qualitatively. Interpreting this table requires some care because neither of these methods can be deemed the "true" value. The theory-based estimates cannot be exactly the same as the true values in nature. The accuracy of the simulation-based estimates rests on the size of the $\Delta \tau_{1}$ and the extent that the functions are nonlinear. It is expected that the simulation-based estimates approach the true value as $\Delta \tau_{1} \rightarrow 0$. Nonetheless, a key takeaway from this table is that the theorybased method gives estimates both quantitatively and qualitatively similar to those obtained from the simulation-based method, which is supposed to approximate the true values.

E.3.2 Scenario B

Table 7 compares the simulation-based and theory-based estimates for Scenario B, in which there are nonzero pre-existing policies in place in the initial state. The same caveat as Section E.3.2 applies, and the same conclusion can be drawn; that is, the theory-based method gives estimates both quantitatively and qualitatively similar to those obtained from the simulation-based method, which is supposed to approximate the true values.

Table 6: Results: Simulation-based and Theory-based Estimates (Scenario A)

[^54]Table 7: Results: Simulation-based and Theory-based Estimates (Scenario B)

	Specification I	Specification II	Specification III	Specification IV
Sector 1				
The effects on revenue				
price effect 1	-6344.7366	-8007.6957	-6329.8521	-8097.8738
	(-5917.1362)	(-7595.2037)	(-6119.8407)	(-7855.3940)
quantity effect 1	6979.1368	8808.3708	6329.8519	8097.8737
	(6508.8499)	(8354.7241)	(6119.8407)	(7855.3940)
The effects on input cost				
price effect 2	-317.2137	-330.0230	-281.9525	-296.4675
	(-268.9607)	(-283.5510)	(-272.6091)	(-287.3972)
quantity effect 2	692.4298	882.8858	641.9433	829.8854
	(700.0890)	(898.5387)	(682.2904)	(875.6960)
The total effects	259.1841	247.8124	-359.9910	-533.4179
	(160.5854)	(144.5326)	(-409.6813)	(-588.2987)
Sector 2				
The effects on revenue				
price effect 1	0.0000	-1206.6214	0.0000	-1099.0013
	(0.0000)	(-1003.2474)	(0.0000)	(-1037.6158)
quantity effect 1	-0.0000	1327.2693	-0.0000	1099.0013
	(0.0000)	(1103.5721)	(-0.0000)	(1037.6158)
The effects on input cost				
price effect 2	0.0000	-137.0358	0.0000	-119.9343
	(0.0000)	(-113.9769)	(0.0000)	(-115.5230)
quantity effect 2	0.0000	133.6919	0.0000	113.1961
	(0.0000)	(118.6000)	(-0.0000)	(115.5862)
The total effects	0.0000	123.9918	0.0000	6.7382
	(0.0000)	(95.7017)	(0.0000)	(-0.0632)
Sector 3				
The effects on revenue				
price effect 1	0.0000	-132.3720	0.0000	-107.5259
	(0.0000)	(-95.2727)	(0.0000)	(-98.5365)
quantity effect 1	-0.0000	145.6076	-0.0000	107.5259
	(0.0000)	(104.8000)	(-0.0000)	(98.5365)
The effects on input cost				
price effect 2	0.0000	-15.0332	0.0000	-11.7343
	(0.0000)	(-10.8262)	(0.0000)	(-10.9730)
quantity effect 2	0.0000	14.5946	0.0000	11.0195
	(0.0000)	(11.2598)	(-0.0000)	(10.9736)
The total effects	0.0000	13.6743	0.0000	0.7149
	(0.0000)	(9.0936)	(0.0000)	(-0.0006)
The change in GDP	259.1841	247.8124	-359.9910	-533.4179
	(160.5854)	(249.3279)	(-409.6813)	(-588.3625)

[^55]
References

Ackerberg, D. A., K. Caves, and G. Frazer (2015). Identification properties of recent production function estimators. Econometrica 83(6), 2411-2451.
Amiti, M., O. Itskhoki, and J. Konings (2019). International shocks, variable markups, and domestic prices. The Review of Economic Studies 86(6), 2356-2402.
Baqaee, D. R. and E. Farhi (2020). Productivity and misallocation in general equilibrium. The Quarterly Journal of Economics 135(1), 105-163.
BEA (2009). Concepts and methods of the U.S. input-output accounts.
Bigio, S. and J. La'O (2020). Distortions in production networks. The Quarterly Journal of Economics 135(4), 2187-2253.
Daberkow, S. and L. A. Whitener (1986). Agricultural Labor Data Sources: An Update, Volume 658 of Agriculture Handbook. Washington, D.C.: U.S. Government Printing Office.
De Loecker, J., J. Eeckhout, and S. Mongey (2021). Quantifying market power and business dynamism in the macroeconomy. Working Paper.
De Loecker, J., J. Eeckhout, and G. Unger (2020). The rise of market power and the macroeconomic implications*. The Quarterly Journal of Economics 135(2), 561-644.
De Loecker, J., P. K. Goldberg, A. K. Khandelwal, and N. Pavcnik (2016). Prices, markups, and trade reform. Econometrica 84(2), 445-510.
De Loecker, J. and F. Warzynski (2012). Markups and firm-level export status. American Economic Review 102(6), 2437-71.
Demirer, M. (2022). Production function estimation with factor-augmenting technology: An application to markups. Working Paper.
Eurostat (2008). Eurostat manual of supply, use and input-output tables. Eurostat Methodologies and Working Papers.
Gandhi, A., S. Navarro, and D. A. Rivers (2019). On the identification of gross output production functions. Journal of Political Economy 128(8), 2973-3016.
Grullon, G., Y. Larkin, and R. Michaely (2019). Are us industries becoming more concentrated?*. Review of Finance 23(4), 697-743.
Kasahara, H. and Y. Sugita (2020). Nonparametric identification of production function, total factor productivity, and markup from revenue data. Working Paper.
Levinsohn, J. and A. Petrin (2003). Estimating production functions using inputs to control for unobservables. The Review of Economic Studies 70(2), 317-341.
Liu, E. (2019). Industrial policies in production networks. The Quarterly Journal of Economics 134(4), 1883-1948.
Matsuyama, K. and P. Ushchev (2017). Beyond ces: Three alternative classes of flexible homothetic demand systems. Working Paper.
Olley, G. S. and A. Pakes (1996). The dynamics of productivity in the telecommunications equipment industry. Econometrica 64 (6), 1263-1297.
Pan, Q. (2022). Identification of gross output production functions with a nonseparable productivity
shock. Working Paper.
Syverson, C. (2019). Macroeconomics and market power: Context, implications, and open questions. Journal of Economic Perspectives 33(3), 23-43.
Young, J. A., T. F. H. III, E. H. Strassner, and D. B. Wasshausen (2015). Supply-use tables for the United States. The Survey of Current Business.

[^0]: ${ }^{*}$ I am deeply indebted to my advisors and committee members Nathan Canen, Bent Sørensen and Kei-Mu Yi. I am also grateful for the invaluable comments and suggestions from Hiroyuki Kasahara, Jose Mota and seminar participants at the University of Houston, Texas Macro Job Candidate Conference 2023, and Midwest Macroeconomics Meetings 2023.
 ${ }^{\dagger}$ Department of Economics, University of Houston, Teaching Unit 2, 4104 Martin Luther King Blvd, Houston, Texas, 77204-5019, United States.

[^1]: ${ }^{1}$ For a recent review of industrial policies, see Rodrik (2008), Juhász et al. (2023), and Juhász and Steinwender (2023).
 ${ }^{2}$ See Fajgelbaum et al. (2020).
 ${ }^{3}$ CHIPS stands for Creating Helpful Incentives to Produce Semiconductors (White House 2022). See also White House (2023) for the details of this act.
 ${ }^{4}$ See Lane (2020) and Juhász et al. (2023).

[^2]: ${ }^{5}$ See, for example, Arkolakis et al. (2012), Adão et al. (2017), Arkolakis et al. (2019), and Adão et al. (2020) for applications in the context of macroeconomics. See Chetty (2009) for a general idea of the sufficient statistics approach.
 ${ }^{6}$ See Matzkin (2013) for constructive identification and nonparametric estimation.
 ${ }^{7}$ A similar insight is exploited by Amiti et al. (2014) and Arkolakis et al. (2019).

[^3]: ${ }^{8}$ In a networked economy, the output of one sector is an input for other sectors; therefore, a change in the output price in one sector induces changes in the input prices in other sectors.

[^4]: ${ }^{9}$ The model entertained in my papers bears some resemblance to those studied in the literature on welfare loss due to misallocation in the presence of production networks, such as Jones (2011, 2013), Baqaee and Farhi (2020, 2022), and Bigio and La'O (2020). These works are principally interested in characterizing welfare loss: they start from an efficient economy (i.e., they assume away from an initial state of market distortions) and then focus on the consequence of adding a policy as a source of distortion. My paper admits market distortions in the initial state of the economy, including the policy itself, and then investigates a welfare-improving policy prescription.
 ${ }^{10}$ Grassi (2017) also studies the case of oligopoly, but his focus is on positive analysis under a parametric specification of production and demand functions. My paper is concerned with evaluating the policy effects with a minimal set of parametric assumptions.

[^5]: ${ }^{11} \mathrm{~A}$ rapidly expanding literature has deployed natural or quasi-experiments to study the causal effects of industrial policies. For example, Juhász (2018) and Lane (2021) exploit, respectively, the Napoleonic blockade against Britain afforded to French cotton spinners and President Park's assassination to define their causal effects. For a more thorough review, see Lane (2020) and Juhász et al. (2023).
 ${ }^{12}$ These terminologies draw from Klenow and Willis (2016) and Alvarez et al. (2023).
 ${ }^{13}$ Doraszelski and Jaumandreu (2019), Brand (2020), and Bond et al. (2021) draw attention to the risk of simply applying

[^6]: ${ }^{18}$ For an arbitrary vector $U=\left[\begin{array}{ll}u_{1} & u_{2}\end{array}\right]$, I write $\frac{d U}{d \tau_{1}}:=\left[\frac{d u_{1}}{d \tau_{1}} \frac{d u_{2}}{d \tau_{1}}\right]$. It is assumed that $V A$ is continuously differentiable in τ_{1}.
 ${ }^{19}$ For an arbitrary vector U, the operator $\operatorname{diag}(U)$ gives a diagonal matrix whose typical diagonal element is an element of U.
 ${ }^{20}$ Specifically, the premultiplying term $\left(\Omega M^{-1}\right)^{l+1}$ captures the sector's intermediate sales to all industries used as intermediate inputs in the $(l+1)$ th round of the production process (upstreamness), while the postmultiplying term $\left(\Omega M^{-1}\right)^{n-l-1}$

[^7]: ${ }^{23}$ In the case of monopolistic competition, the literature typically assumes that each market is populated by a mass of infinitesimally small firms. In such a setup, individual firms are negligible relative to the sectoral aggregate. See Gaubert and Itskhoki (2020).
 ${ }^{24}$ In Section 3, I show that these assumptions are flexible enough to encompass the specifications that are commonly used in the macroeconomics literature.
 ${ }^{25}$ See Arkolakis et al. (2019).

[^8]: ${ }^{26}$ The demand for sectoral goods aligns with the production network Ω.
 ${ }^{27}$ The implicit assumptions, both of which are standard in the literature (e.g., Grassi 2017; Kasahara and Sugita 2020), are that sectoral input goods are variable in the firm's production and that input markets are perfectly competitive.
 ${ }^{28}$ Since the information structure is complete, $H_{i}\left(z_{i 1}, z_{i 2}\right)$ is a constant and common to all firms.
 ${ }^{29}$ The function $\mathcal{M}_{i}(\cdot)$ is not required to be unique. See Appendix 2.4.
 ${ }^{30}$ See Section 1.

[^9]: ${ }^{31}$ See, for example, Helpman et al. (2008).
 ${ }^{32}$ For early works investigating the general equilibrium effects in the context of program evaluations, see Heckman et al. (1998a,b,c).
 ${ }^{33}$ Arkolakis et al. (2019) consider a model of variable markups under monopolistic competition with a flexible class of non-CES demand functions. My paper adds an additional source of endogenous markups, strategic interactions.
 ${ }^{34}$ I abstract from other policy measures such as technology adoption, direct price regulation and antitrust law.
 ${ }^{35}$ The short-run scope can be rationalized by acknowledging that firms' entry and exit decisions generally invoke a considerable amount of cost and time. Technically, accommodating the endogenous choice of entry and exit requires another layer of the fixed point problem concerning the free-entry condition, which in general is very hard to solve (Wang and Werning 2022). In particular, given that the number of firms in my setup is finite, it is not even possible to consider differentiation of the free-entry condition. Extending the theory to a long-run analysis is left for future work.
 ${ }^{36}$ Analogously, I write $\boldsymbol{\omega}_{L}:=\left[\omega_{i, L}\right]_{i=1}^{N}$ with $\omega_{i, L}$ indicating the labor share in sector i 's cost.

[^10]: ${ }^{37} \mathrm{~A}$ similar setup is considered in Bigio and La'O (2020).
 ${ }^{38}$ That is, $\tau_{n}^{0} \neq \tau_{n}^{1}$ and $\tau_{n^{\prime}}^{0}=\tau_{n^{\prime}}^{1}$ for all $n^{\prime} \neq n$. In the example of the CHIPS Act, sector n corresponds to the semiconductor industry.
 ${ }^{39}$ See Bartelsman and Doms (2000) and Syverson (2011).

[^11]: ${ }^{40}$ To economize on notation, I use the same notation $q_{i k}$ to mean the demand for firm k 's good and firm k 's output quantity. By doing this, I implicitly apply the market clearing condition to individual firms' products, as the sectoral aggregator is the only purchaser of firms' products.

[^12]: ${ }^{41}$ See the unit cost condition (67) in Appendix C.2.
 ${ }^{42}$ Intuitively, instead of keeping track of every single one of other firms' choices, the firm only needs to look at this aggregate quantity.

[^13]: ${ }^{43}$ This assumption is adopted only to simplify identification and estimation and can be relaxed at the cost of an additional technicality. See Kasahara and Sugita (2023).
 ${ }^{44}$ See also Matsuyama and Ushchev (2017), Kasahara and Sugita (2020), and Matsuyama (2023) for other examples.

[^14]: ${ }^{45} \mathrm{I}$ abstract away the capital accumulation in order to stick to a static environment. When bringing my model to the data, I interpret the firm's productivity $z_{i k}$ as its overall production capacity, including capital assets. See Appendix B.3.3.
 ${ }^{46}$ Under specification (13), it holds that for each $i \in \mathbf{N}, \omega_{i, L}+\sum_{j=1}^{N} \omega_{i, j}=1$.
 ${ }^{47}$ In my setup, differentiated goods are produced by heterogeneous firms, so that the level at which product differentiation is defined is the same as that at which firm heterogeneity is defined. Thus, the notion of firm coincides with that of variety.

[^15]: ${ }^{48}$ Although Assumption 3.5 (i) might appear to be restrictive at first glance, a number of applied studies have found that the constant returns to scale serves as a good approximation (e.g., Basu and Fernald (1997), Syverson (2004), Foster et al. (2008), and Bloom et al. (2012)). The CRS production functions are customarily assumed by recent works on firm-level macroeconomic models - for example, (Atkeson and Burstein 2008) in an oligopolistic competition model of international trade and Baqaee and Farhi (2022) in a multi-country model of international trade in the presence of production networks.
 ${ }^{49}$ Since the labor force is assumed to be frictionlessly mobile across sectors, the wage W is common for all sectors.
 ${ }^{50}$ The firm's profit here is defined as revenue minus variable costs.

[^16]: ${ }^{51}$ Note that, as seen in (20), government spending G can be dropped under (8), (18), and (19).

[^17]: ${ }^{52} \mathrm{I}$ abstract from issues of endogenous policies, such as in Grossman and Helpman (1994).

[^18]: ${ }^{53}$ The market clearing condition for individual firms' products is straightforward, as firm-level products are only used by the sectoral aggregator. Thus, it is already implicitly applied in the exposition.
 ${ }^{54}$ Each summand can be rearranged as $W^{*} \ell_{i k}^{*}+\pi_{i k}^{*}-\sum_{j=1}^{N} \tau_{i} P_{j}^{*} m_{i k, j}^{*}=p_{i k} q_{i k}-\sum_{j=1}^{N} P_{j}^{*} m_{i k, j}^{*}$, which is the value added gross of the firm's markup.
 ${ }^{55}$ See Lane (2020) and Juhász et al. (2023).

[^19]: ${ }^{56}$ The details are provided in Appendix B.
 ${ }^{57}$ Recall that labor is assumed to be frictionlessly mobile across sectors, which implies that the wage is the same everywhere in the economy.

[^20]: ${ }^{58}$ Throughout the transformation, the value-added section of the use table remains intact.

[^21]: ${ }^{59}$ The Cobb-Douglas production function has traditionally been used in a wide range of the macroeconomics literature for example, the real business cycle theory (Long and Plosser 1983; Horvath 1998, 2000) and international trade (Caliendo and Parro 2015; Grassi 2017; Bigio and La'O 2020). The recent literature has emphasized the importance of an endogenous input-output structure of the economy and employed a CES aggregator (e.g., Atalay 2017; Baqaee and Farhi 2019; Caliendo et al. 2022).
 ${ }^{60}$ See Assumption 3.1.
 ${ }^{61}$ In Appendix B.3.2, I further derive an explicit expression for $P_{i}^{M^{*}}$.
 ${ }^{62}$ I assume additive separability in terms of \log variables.

[^22]: ${ }^{63}$ The latter is embodied in Assumptions C. 6 and C.7.
 ${ }^{64}$ Notice that Assumption 5.1 only restricts the equilibrium selection probability and does not exclude the possibility of multiple equilibria per se.
 ${ }^{65}$ See the discussions in Sections 6 and 7.
 ${ }^{66}$ It is tacitly assumed that as far as the information set is concerned, the government, which is an agent of the model, is identical to the econometrician outside the model.

[^23]: ${ }^{67}$ With a slight abuse of notation, for an equality $V^{*}=V(s)$, I write $\left.\frac{d V(s)}{d s}\right|_{s=\boldsymbol{\tau}}=\frac{d V^{*}}{d \tau_{n}}$.
 ${ }^{68}$ See Costinot and Rodríguez-Clare (2014) for an outline of the method.

[^24]: ${ }^{69}$ In a related vein, Baqaee and Farhi (2022) investigate the consequences of discrete changes in distortions. Assuming away from any distortions in the initial state of the economy, they provide a second-order approximation for the responses of real GDP and welfare. Accordingly, the discrete changes in their characterization need to be small enough to make the second-order approximation sufficiently good. By contrast, this paper derives an exact formula that is valid for discrete changes of arbitrary size (as long as they are in the historically observed support) from the current policy regime, which may not necessarily be efficient. See also Kleven (2021) for a discussion.
 ${ }^{70}$ See the discussion below Assumption 5.2.
 ${ }^{71}$ When the ex ante evaluation of the effects of shocks is the object of interest, the appropriate criterion in this paradigm should involve the probability distribution of the shocks.

[^25]: ${ }^{72}$ It has long been recognized that the use of the quantity measure of revenue data - revenue data deflated by price index - as a proxy for quantity data induces an omitted price bias (Klette and Griliches 1996) and masks the demandside heterogeneity encoded in firm-specific price variables. See, for example, Klette and Griliches (1996), Doraszelski and Jaumandreu (2019), Flynn et al. (2019), Bond et al. (2021), Kirov et al. (2022), and Kasahara and Sugita (2020) for the details.
 ${ }^{73}$ The host of the literature on the identification of production functions assumes away from strategic interactions. For example, in the context of the control function approach, Ackerberg et al. (2015) and Gandhi et al. (2019) assume perfectly competitive markets, and Kasahara and Sugita (2020) focus on monopolistic competition. Doraszelski and Jaumandreu (2019) and Brand (2020) point out that the canonical scalar unobservability assumption eliminates the possibility of strategic interactions and examine the extent to which the estimates are biased if the standard approach is mistakenly used. Matzkin (2008) considers the identification of a system of equations permitting strategic interactions, but requires linear separability in excluded regressors, which may not be supported on theoretical grounds in my context.

[^26]: ${ }^{74}$ In general, this idea extends beyond the HSA demand system insofar as the competitors' decisions are encapsulated in a single aggregator. See Appendix C.1.
 ${ }^{75}$ Since $\mathcal{H}_{i}(\cdot)$ is only indexed by sector i, it could in principle be absorbed by the subscript of \mathcal{M}_{i}. Nevertheless, I prefer to leave it explicit to emphasize the existence of strategic interactions.

[^27]: ${ }^{76}$ In Example 5.1, $m c_{i}$ represents part of the marginal cost common across firms in the same sector and is given by $m c_{i}=\alpha_{i}^{-\alpha_{i}}\left(1-\alpha_{i}\right)^{1-\alpha_{i}} W^{\alpha_{i}}\left(P_{i}^{M}\right)^{1-\alpha_{i}}$.

[^28]: ${ }^{77}$ For the inference of dyadic variables such as unilateral and bilateral trade flows, I recommend using the network-robust standard error proposed by Canen and Sugiura (2023).
 ${ }^{78}$ The empirical treatment-effect literature on industrial policies has mostly looked at the average treatment effect on the treated industry. See Lane (2020).
 ${ }^{79}$ Our approach takes a stance on estimation rather than calibration. See Hansen and Heckman (1996) for a discussion concerning the pros and cons of these two methods. See also Matzkin (2013) for nonparametric estimation.

[^29]: ${ }^{80}$ The total amount of value-added tax in 2021 is $\$ 8.44$ billion, and the total expense on material input is $\$ 56.53$ billion. Hence, $(8.44+2.43) / 56.53 \times 100=19.23 \%$. See Appendix B.2.2.
 ${ }^{81}$ In the dataset, the semiconductor subsidy was 3.51% in 2007 and 16.26% in 2019. In terms of the notation in Section 3 , it is represented as $\mathscr{T}_{n}=[0.0351,0.1626]$.
 ${ }^{82}$ To make the analysis as close to reality as possible, we set the current policy regime to the latest year available, which is 2021. In terms of the model, this policy reform can be expressed by letting $\tau_{n}^{0}=0.1494$ and $\tau_{n}^{1}=0.1600$.
 ${ }^{83}$ Observe that $\frac{16-14.94}{19.23-14.94}=0.2471$. One way to interpret this policy scenario is that it takes time to put the whole part of the CHIPS Act into effect, and what can be realized in the short run is only a part of it. This view is consistent with the short-run perspective of this paper.
 ${ }^{84}$ In view of Corollary 5.1, these two cases are analyzed in a unified framework.

[^30]: ${ }^{85}$ In this analysis, I set $\bar{v}=10$.
 ${ }^{86}$ For the case of monopolistic competition, the estimates are different qualitatively as well.
 ${ }^{87}$ Figure 1 compares the values of the total derivatives of Y with respect to semiconductor subsidy τ_{n} over the course of the policy reform from τ_{n}^{0} to τ_{n}^{1}. Note that $\frac{d Y}{d s}=\sum_{i=1}^{N} \frac{d Y_{i}(s)}{d s}$, and thus the area surrounded by the blue/red line and the broken line indicating zero represents the policy effect of interest (24).

[^31]: ${ }^{88}$ Since the switching and wealth effects are multiplied by minus, as shown in (31), when they are summed into the total effect, I refer to its sign (positive or negative) by the gross of this minus sign.

[^32]: ${ }^{89}$ These terminologies are borrowed from Klenow and Willis (2016) and Alvarez et al. (2023).

[^33]: ${ }^{90}$ Since these measures involve the derivatives of marginal revenue functions with respect to firms own choices, they do not vanish even when the market is monopolistically competitive.

[^34]: ${ }^{91}$ This observation is true for many other industries too. See Figure 4.
 ${ }^{92}$ When the market is monopolistic, 75 firms out of 76 decrease their output quantities; when the market is oligopolistic, 70 firms out of 76 increase their output quantities.
 ${ }^{93}$ To make this mechanism transparent, I keep track of five firms with substantial adjustments (i.e., $k \in\{3,21,34,56,68\}$)

[^35]: throughout Figures 2 and 3.

[^36]: ${ }^{94}$ See Baqaee and Farhi (2020) and Covarrubias et al. (2020).

[^37]: ${ }^{95}$ See Appendix A.

[^38]: ${ }^{96}$ In (39), let $K_{i}\left(z_{i k}\right):=f_{i}\left(\ell_{i k}, m_{i k}\right) z_{i k}^{2}-\bar{H}_{i} z_{i k}-K_{i}$. Then, $K_{i}(0)=-K_{i}>0$. Since moreover $f_{i}\left(\ell_{i k}, m_{i k}\right)>0$ for all (ell $l_{i k}, m_{i k}$), and $z_{i k}>0$, it thus has to be that (40) gives two distinct positive values for $z_{i k}>0$.

[^39]: ${ }^{97}$ Typically, the IEA is valued at either of the producers', basic, or purchasers' prices. The producers' prices are the total amount of monetary units received from the purchasers for a unit of a good and service that is sold. The basic prices mean the total amount retained by the producer for a unit of a good and service. This price plays a pivotal role in the producer's decision making about production and sales. The purchasers' prices refer to the total amount payed by the purchasers for a unit of a good and service that they purchase. This is the key for the purchasers to make their purchasing decisions. By definition, the basic prices are equal to the producers' prices minus taxes payable for a unit of a good and service plus any subsidy receivable for a unit of a good and service; and the purchasers' prices are equivalent to the sum of the producers' prices and any wholesale, retail or transportation markups charged by intermediaries between producers and purchasers. See BEA (2009) and Young et al. (2015) for the detail.
 ${ }^{98}$ The importers' customs frontier price is calculated as the cost of the product at foreign port value plus insurance and freight charges to move the product to the domestic port. See Young et al. (2015) for the detail.

[^40]: ${ }^{99}$ For example, if there is a non-zero entry in the cell of the supply table whose column is agriculture and whose row is manufacturing products, it is recorded in the use table as the supply of manufacturing products, the largest component of which should be accounted for by the supply from manufacturing industry. Now my goal is to modify this attribution in a way that the supply of manufacturing products by agriculture industry is treated as agricultural products. To this end, I need to subtract the contributions of agriculture industry from the use of manufacturing products, and transfer them to the agricultural commodities, thereby changing the classification of the row from commodity to industry.
 ${ }^{100}$ There is another approach to transform the use table to a symmetric commodity-by-commodity table. In such a case, sectors of my conceptual model corresponds to commodities in the data. See Eurostat (2008) for the detail.
 ${ }^{101}$ Related to this assumption is the fixed industry sales structure assumption, in which . However, it is Assumption B. 1 that is widely used by statistical offices for various reasons. See Eurostat (2008) for the detail.
 ${ }^{102}$ See Liu (2019), Baqaee and Farhi (2020) and Bigio and La'O (2020) for application and reference.

[^41]: ${ }^{103}$ By construction, the sum of the latter across all industries has to coincide with GDP for the economy.
 ${ }^{104}$ In BEA (2009), compensation of employees is defined to be ""

[^42]: ${ }^{105}$ In principle, this assumption is necessitated in order to compensate the shortcoming of the dataset at hand. This assumption could be relaxed to the extent which allows us to recover the material input and demand for sectoral intermediate goods. Also this assumption could even be omitted if detailed data on firm-to-firm trade is available such as [reference...].

[^43]: ${ }^{106}$ See (Syverson 2019), De Loecker et al. (2020) and Kasahara and Sugita (2020) for discussion.

[^44]: ${ }^{107}$ Either of $H_{1, i}(\cdot)$ and $H_{2, i}(\cdot)$ needs to be "shut down" adequately.

[^45]: ${ }^{108}$ The measurement error is supposed to capture the variation in revenue that cannot be explained by firm-level input variables nor aggregate variables. This can be conceived as i) a shock to the firm's production that is unanticipated to the firm and hits after the firm's decision has been made, ii) the coding error in the measurement used by the econometrician to observe the revenue.

[^46]: ${ }^{109}$ This specification is equivalent to assume that the error terms enter in a multiplicative way the system of structural equations in terms of the original variables. The additive separability of the measurement errors in terms of the logarithm variables are canonically employed in the literature (Olley and Pakes 1996; Levinsohn and Petrin 2003; Ackerberg et al. 2015; Gandhi et al. 2019).

[^47]: ${ }^{110}$ See also Kasahara and Sugita (2020).

[^48]: ${ }^{111}$ Observe that for a square matrix \mathcal{O}, the inverse matrix \mathcal{O}^{-1} is given by $\mathcal{O}^{-1}=\frac{\operatorname{adj}(\mathcal{O})}{|\mathcal{O}|}$, where $\operatorname{adj}(\mathcal{O})$ is the adjoint matrix of \mathcal{O}, i.e., the transpose of the cofactor matrix. The cofactor matrix C of \mathcal{O} is defined as $C:=\left[c_{a, b}\right]_{a, b}$, where $c_{a, b}:=(-1)^{a+b}\left|M_{a, b}\right|$, with $M_{a, b}$ representing the minor matrix of \mathcal{O} that can be created by eliminating the a-th row and b-th column from the matrix \mathcal{O}. In my context, the k^{\prime}-th column of the cofactor matrix of $\Lambda_{i, 1} \operatorname{excludes}\left\{\frac{\partial m r_{i k}(\cdot)^{*}}{\partial q_{i k^{\prime}}}\right\}_{k=1}^{N_{i}}$, all of which are in turn ruled out from the k^{\prime}-th row of the adjoint matrix. Since the determinant involves the effect of all firms' quantity changes, the weighted sum along each row of $\Lambda_{i, 1}^{-1}$ reflects the contribution of the changes in firm k^{\prime} 's output quantity.

[^49]: ${ }^{112}$ That these indices are negative means the presence of the firm drugs the sectoral strategic complementarity in the direction of strategic substitutability, and vice verse.
 ${ }^{113}$ Precisely, the sign depends on the demand side parameters. For instance, when the sectoral aggregator takes the form of a CES production function as in Example 3.1, these indices are negative as long as $\sigma_{i}>2$.

[^50]: ${ }^{114}$ The quotation marks are attached to emphasize that in my model firms are not explicitly engaged in strategic interactions across sectors.

[^51]: ${ }^{115}$ Since the identification argument exploits the first-order derivatives of the function $\tilde{\phi}_{i}(\cdot)$, the specification has to be an order of no less than one. my choice of the second-order approximation gives a margin of flexible fit for the derivatives.

[^52]: ${ }^{116}$ Index needs to be relabeled appropriately.
 ${ }^{117}$ These data can be viewed either as the "true data" that realize from the data generating process, or the values that have been computed under the parameter values so calibrated.

[^53]: ${ }^{118}$ The measurement error is assumed to enter in a linear, additive fashion in \log s; i.e., $\log r_{i k}=\log \bar{r}_{i k}+\log \eta_{i k}$, where $\bar{r}_{i k}$ and $\bar{r}_{i k}$ are the observed and true (simulated) revenue, respectively, with $E\left[\log \eta_{i k} \mid \ell_{i k}, m_{i k}\right]=0$. See Section C.1.2.

[^54]: Note: This table reports the simulation-based and theory-based estimates for Scenario A. Each cell indicates the number obtained by the theory-based method, with the round brackets indicating the corresponding simulation-based estimates.

[^55]: Note: This table reports the simulation-based and theory-based estimates for Scenario B. Each cell indicates the number obtained by the theory-based method, with the round brackets indicating the corresponding simulation-based estimates.

